



#### EAAP Annual Meeting 2015, Session 38

# Genetic and molecular background of cattle behaviour and its effects on milk production and welfare

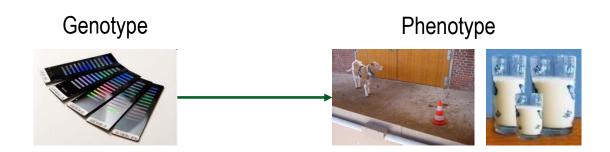
J. Friedrich<sup>1</sup>, B. Brand<sup>2</sup>, J. Knaust<sup>2</sup>, C. Kühn<sup>2</sup>, F. Hadlich<sup>2</sup>, K. L. Graunke<sup>3</sup>, J. Langbein<sup>3</sup>, S. Ponsuksili<sup>2</sup>, M. Schwerin<sup>1,2</sup>

<sup>1</sup>Institute for Farm Animal Research and Technology, University of Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany <sup>2</sup>Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany <sup>3</sup>Institute for Behavioural Physiology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany



## Background

Response to environmental stimuli can be described as behaviour characteristics

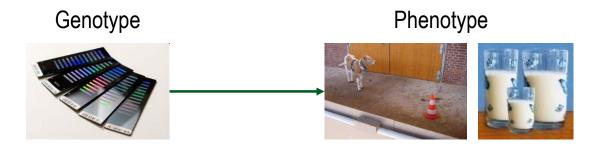

- Effects on animal welfare
- Effects on production traits:
  - Average daily weight gain (ADG) [1]
  - " Meat quality [2]
  - " Milk yield [3]
  - *"* ..
- ► Insights into the genetic and molecular mechanisms affecting behaviour are still limited

**Goal:** Exploring underlying genetic and molecular mechanisms of cattle behaviour especially in regard to milk performance



## Strategy

#### 1) SNPs affecting behaviour and milk performance




#### 2) Differential gene expression between temperament types





#### 1) SNPs affecting behaviour and milk performance

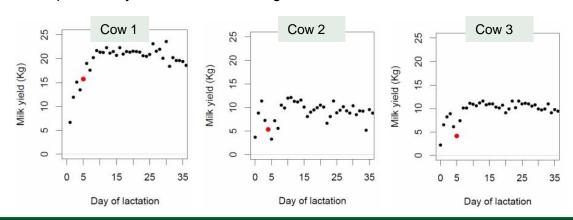




## Material & methods

**Animals:** 147 F<sub>2</sub> Segfam cows (Charolais x German Holstein)

#### Behaviour phenotype:


Activity, inactivity and exploration in open-field (OF) and novel-object (NO) test<sup>[4]</sup>





#### Milk performance phenotype:

- Milk yield d1-d5, milk yield d6-d30, average daily yield
- Ratio for drop in milk yield after rehousing





## Material & methods

#### **Genotype:**

" 37,201 SNPs (Illumina Bovine SNP50 Bead Chip®)

#### **Statistical analysis:**

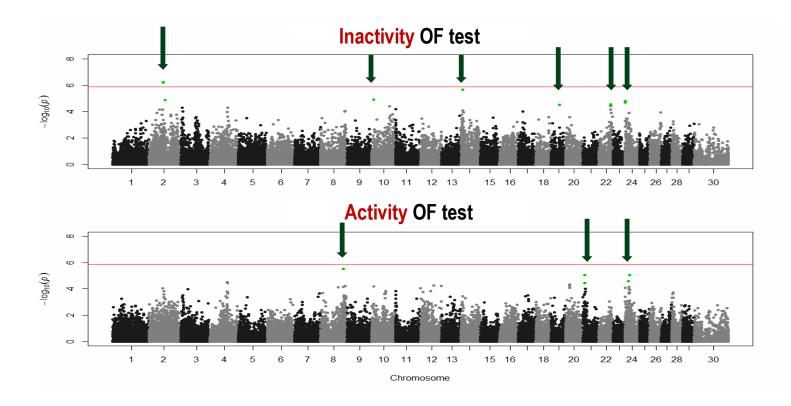
- Additive SNP effect in Qxpak 5.05 [5]
- " Bonferroni correction (p < 0.05)

$$y_{ijk} = \mu + s_j + a_i + u_k + e_{ijk}$$

 $y_{ijk}$  = the behaviour phenotype of animal i (i = 1, ..., 147)

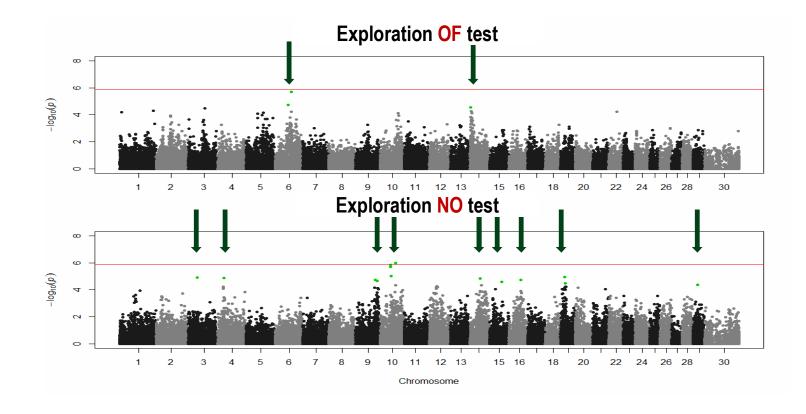
μ = overall mean

 $s_i$  = fixed effect of the interaction year x season (j = 1, ..., 22)


 $a_i$  = fixed additive-genetic effect of SNP i (i = 1, ..., 37201)

 $u_k$  = random infinitesimal polygenic effect of animal i

 $e_{ijk}$  = residual random effect.




- ▶ 41 SNPs were significantly associated with at least one of the behaviours in OF and NO test
  - 1. Genetic loci affecting behaviour were specific for trait and test situation





- ▶ 41 SNPs were significantly associated with at least one of the behaviours in OF and NO test
  - 2. Genetic loci affecting behaviour were specific for trait and test situation





Of the 41 SNPs, 9 were significant for exploration in NO test and milk performance traits



- Of the 41 SNPs, 9 were significant for exploration in NO test and milk performance traits
  - Linkage block on BTA29: genomic region of known QTL for behaviour and milk performance [6,7,8]

| SNP name     | Chr | Trait | Genotype |               |    |                    |
|--------------|-----|-------|----------|---------------|----|--------------------|
|              |     |       |          | 1             |    | 2                  |
|              |     |       | n        | LSM ± S.E.    | n  | LSM ± S.E.         |
| rs108965864, | 29  | MY    | 90       | $6.5 \pm 0.8$ | 57 | $3.9 \pm 0.8**$    |
| rs42169108,  |     | R     |          | $1.2 \pm 0.1$ |    | $1.6 \pm 0.2^{**}$ |
| rs43099931   |     | DE    |          | 51.0 ± 14.2   |    | 87.0 ± 14.6**      |

MY, average daily milk yield; R, milk drop rehousing; DE, exploration behaviour; \*\* p < 0.001





#### 2) Differential gene expression between temperament types



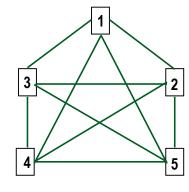


## Material & methods

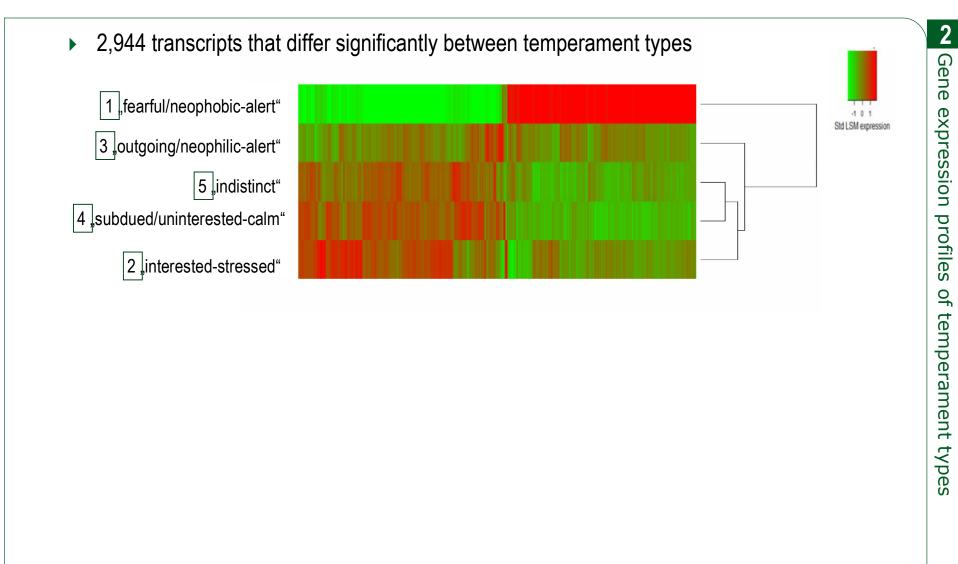
**Animals:** 60 F<sub>2</sub> Segfam cows (Charolais x German Holstein)

#### **Temperament phenotype:**

- Temperament types assessed in novel-human (NH) test [4,9]
  - 1 "fearful/neophobic-alert"
  - 2 "interested-stressed"
  - 3 "outgoing/neophilic-alert"
  - 4 "subdued/uninterested-calm"
  - 5 "indistinct group"




#### **Transcriptome:**


- Adrenal cortex tissue
- 10,986 transcripts (Affymetrix® GeneChip® Bovine Gene v1 Array)

#### **Statistical analysis:**

- Analysis of variance
- FDR correction (p < 0.05)

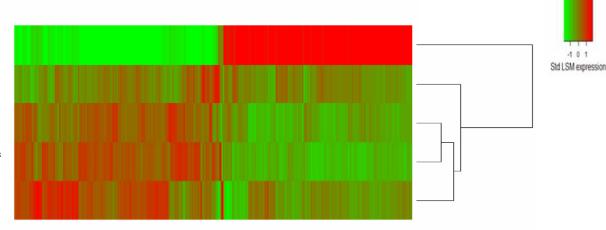




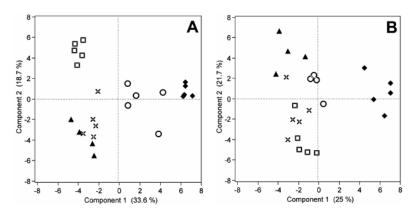


-9-




2

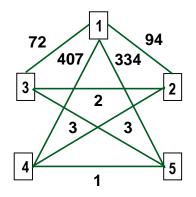
Gene


expression profiles of temperament types

▶ 2,944 transcripts that differ significantly between temperament types

- ◆ 1 ,fearful/neophobic-alert"
- ▲ 3 "outgoing/neophilic-alert"
  - **x** 5 "indistinct"
- 4 subdued/uninterested-calm
  - 2 "interested-stressed"

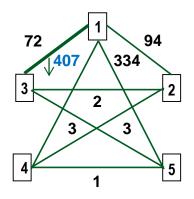



Principal component score plot of the first two principal components for metabolite features with high relevance in the classification of temperament types in the prefrontal cortex (A) and serum (B). [9]



[9] Brand et al. (2015) -9-

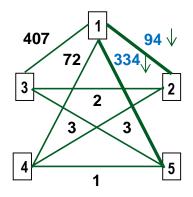



Ingenuity Pathway Analyses (FC > 1.5)



- 1 "fearful/neophobic-alert"
- 2 "interested-stressed"
- 3 "outgoing/neophilic-alert"
- 4 subdued/uninterested-calm
- 5 "indistinct group"
- Cellular processes: growth, proliferation, signalling
- Stress response: Glucocorticoid receptor signalling, NRF2-mediated oxidative stress response



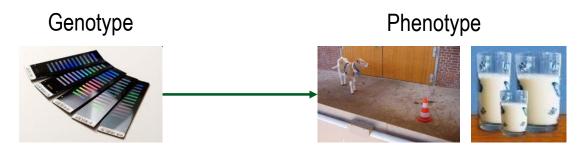

Ingenuity Pathway Analyses (FC > 1.5)



- 1 "fearful/neophobic-alert"
- 2 "interested-stressed"
- 3 "outgoing/neophilic-alert"
- 4 subdued/uninterested-calm
- 5 "indistinct group"
- Cellular processes: growth, proliferation, signalling
- " Stress response: **Glucocorticoid receptor signalling**, NRF2-mediated oxidative stress response



Ingenuity Pathway Analyses (FC > 1.5)




- 1 "fearful/neophobic-alert"
- 2 "interested-stressed"
- 3 "outgoing/neophilic-alert"
- 4 subdued/uninterested-calm
- 5 "indistinct group"
- Cellular processes: growth, proliferation, signalling
- Stress response: Glucocorticoid receptor signalling, NRF2-mediated oxidative stress response



## Summary & conclusion

#### 1) SNPs affecting behaviour and milk performance



- Genetic regions affect behaviour traits in cattle
  - Specific in regard to trait and test situation
- Association between behaviour traits and milk performance
  - Variability in responsiveness towards rehousing visible in milk yield
  - Genetic variations associated with behaviour traits and milk performance indicate contrary genotype effects for agitated behaviour and milk yield



## Summary & conclusion

#### 2) Differential gene expression between temperament types



- Expression profiling of the adrenal cortex identified transcripts differentially expressed between temperament types
  - Clear discrimination of "fearful/neophobic-alert" cows from the others indicates prominent role of fearfulness in behaviour manifestation
  - # Highlighted pathways of adrenal development and stress response



## Thank you for your attention!



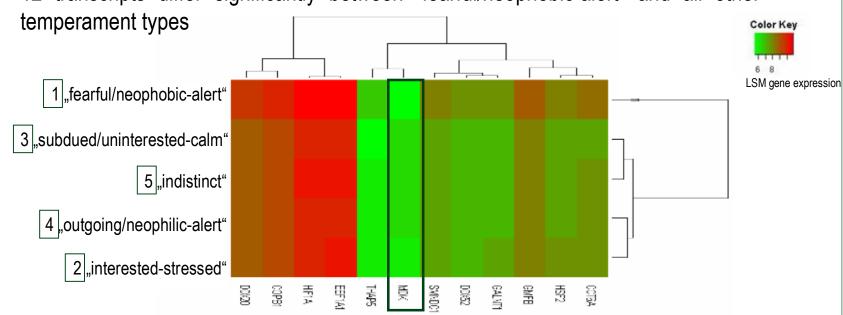
#### **Kontakt**

Juliane Friedrich

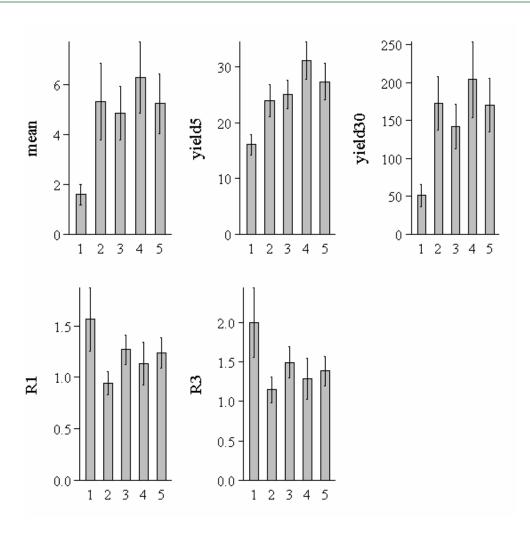
Telefon: +49 38208 68 974

E-Mail: juliane.friedrich@uni-rostock.de

"PHENOMICS German Federal Ministry of Education and Research (BMBF), 0315536A and 0315536G


European Federation of Animal Science

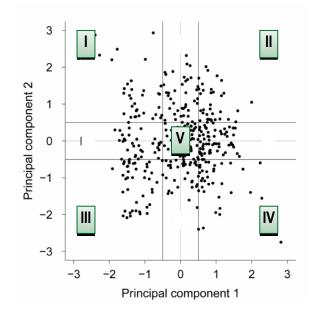



## References

- [1] Vetters et al. 2013 Comparison of flight speed and exit score as measurements of temperament in beef cattle. Journal of Animal Science 91, 374-381.
- [2] Hall et al. 2011 Working chute behavior of feedlot cattle can be an indication of cattle temperament and beef carcass composition and quality. Meat Science 89, 52-57.
- [3] Hemsworth et al. 2000 Relationships between human-animal interactions and productivity of commercial dairy cows.
- [4] Graunke et al. 2014 Describing temperament in an ungulate: a multidimensional approach. PLoS ONE 8, e74579
- [5] Perez-Enciso & Misztal 2004 Qxpak.5: old mixed model solutions for new genomics problems. BMC Bioinformatics 12, 202
- [6] Hiendleder et al. (2003) Mapping of QTL for body conformation and behavior in cattle. Journal of Heredity 94, 496-506.
- [7] Viitala et al. (2003) Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. Journal of Dairy Science 86, 1828-1836.
- [8] Gutièrrez-Gil et al. (2008) Identification of quantitative trait loci affecting cattle temperament. Journal of Heredity 99, 629-638.
- [9] Brand *et al.* 2015 Temperament type specific metabolite profiles of the prefrontal cortex and serum in cattle. PLoS ONE 10, e0125044

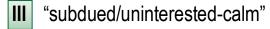
▶ 12 transcripts differ significantly between "fearful/neophobic-alert" and all other

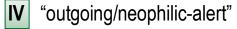



- 12 transcripts differ significantly between "fearful/neophobic-alert" and all other temperament types
- MDK (midkine) gene up-regulated
- MDK plays key role in adrenal development [10,11]
- Abundance of MDK was negatively associated with anxiety [12]






| Behaviour                      | PC 1     | PC 2     |
|--------------------------------|----------|----------|
| Contact-D                      | 0.76457  | 0.05006  |
| Contact-F                      | 0.83250  | 0.12250  |
| Contact-L                      | -0.89613 | -0.13959 |
| Inactivity-D                   | -0.41347 | -0.85549 |
| Exploration-D                  | 0.15037  | 0.82661  |
| Exploration-L                  | -0.19767 | -0.63679 |
| Grooming-D                     | -0.08038 | 0.42876  |
| Activity-D                     | 0.56716  | 0.61371  |
| Activity-L                     | -0.49598 | -0.21244 |
| Running-D                      | 0.47287  | 0.34835  |
| Vocalisation-F                 | 0.38216  | 0.07442  |
| Change of segment-F            | 0.70109  | 0.51393  |
| Object segment -L              | -0.87210 | -0.15841 |
| Object segment-D               | 0.83888  | 0.12061  |
| Object neighbouring segment -L | -0.73723 | -0.22699 |


Graunke et al. 2013

