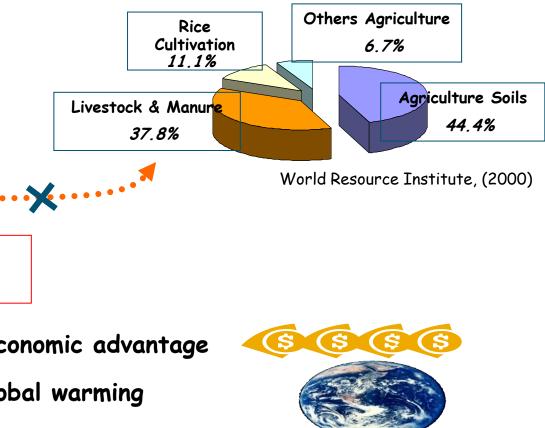
Effect of sainfoin (Onobrychis viciifolia) silage on

feed digestibility and methane emission in cows

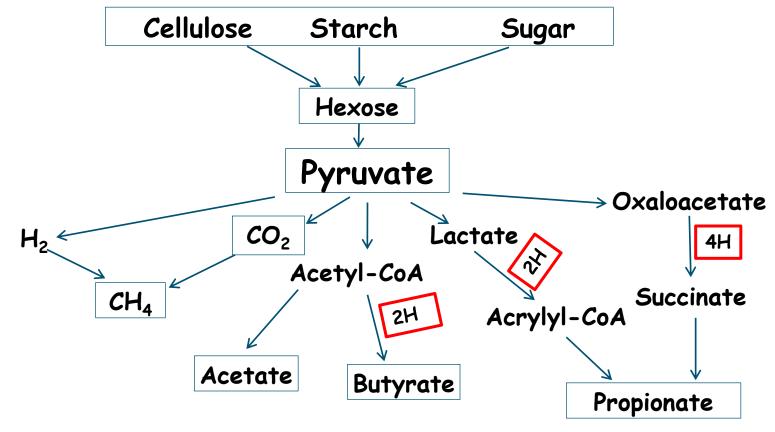
Huyen Thi Nguyen (huyen.nguyen@wur.nl)

Fermentation end products

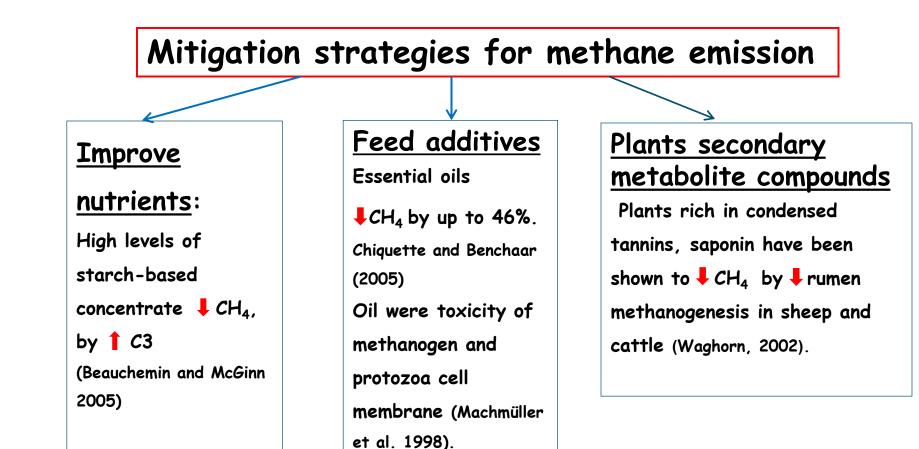
- VFAs
- Microbial Protein
- Methane

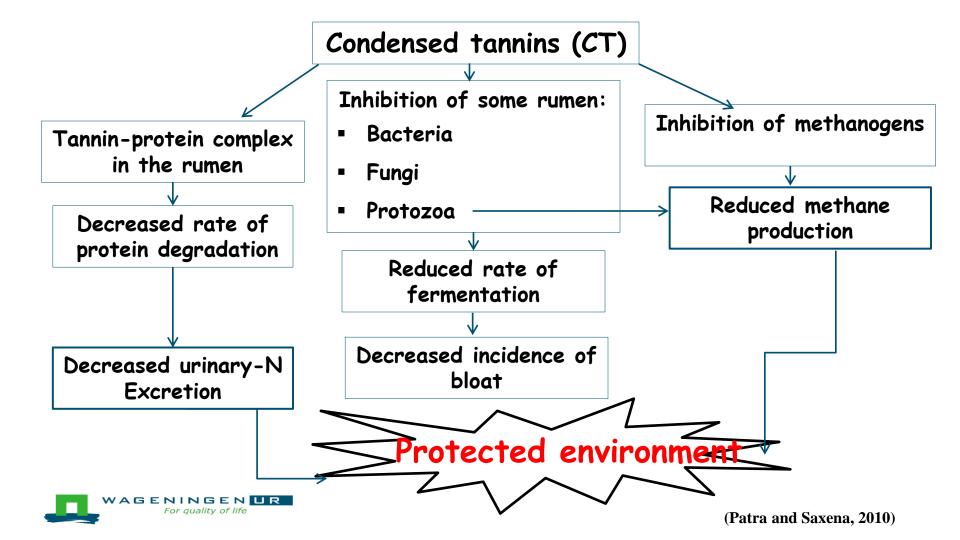

Energy loss up to 15%

(Johnson et al., 1993)


AGENINGENUR For auality of life

- > Improve economic advantage
- > Reduce global warming


Introduction World methane gas emission by agriculture sector


Rumen fermentation

For quality of life

Introduction

Sainfoin (Onobrychis viciifolia)

+ Adapt well to dry hilly environments on calcareous soils + Biomass about 10-15 ton/ha/year + 20-22% CP (Guglielmelli et al., 2011) + Rhizobial bacteria > Binds nitrogen in the soil + Low phosphor need + Contain condensed tannin (CT)

(Guglielmelli et al., 2011)

Positive effects of sainfoin:

- High palatability
- High nutritive value
- Better protein utilization
- Anthelmintic function
- Bloat resistant

AGENIN

 Reduce methane production

(Carbonero et al., 2011)

$\begin{array}{l} \textbf{Objective} \\ \textbf{To determine effect of Sainfoin silage in TMR} \\ \textbf{diet on feed digestibility and } \textbf{CH}_4 \text{ emission} \end{array}$

Materials and Methods Experimental design:		Ingredients	Dietary treatment	
		(kg/100kg DM)	CON	SAIN
A		Grass silage	56.35	26.19
\rightarrow	\rightarrow	Sainfoin silage	0	33.27
	and the second second	Maize silage	10.41	9.66
Sainfoin	Making silage	Concentrate	26.61	24.72
Samjon	Maning shage	Linseed	6.63	6.16
Dietary tre	atment			
Periods	CON	SAIN		
Dawie d. 1	Cow 1	Cow 4		
Period 1 (25 days)	Cow 2	Cow 5		
	Cow 3	Cow 6		
Period 2 (25 days)	Cow 4	Cow 1		
	Cow 5	Cow 2		
	Cow 6	Cow 3		

Materials and Methods

Measurement nutrition digestibility, nitrogen utilization, CH₄ production:

21 days for adaptation

4 days for measurements

- \checkmark Feed intake and residues : morning + afternoon
- \checkmark Feces: during 4 days measurements
- ✓ Milk production: morning + afternoon
- \checkmark CH₄ production using respiration chambers for 4 days
- ✓ Parameters: DM, OM, NDF, ADF, N, and GE

For quality of life

Table 1. Chemical compositions of the CON and SAIN diet

T t	Dietary treatment		
Items	CON	SAIN	
Chemical composition (g/kg DM)			
DM, g/kg product	444.9	357.2	
GE, MJ/kg DM	19.5	19.0	
OM	918.9	891.4	
СР	162.6	171.9	
NDF	395.7	359.1	
ADF	236.8	244.5	

Chemical compositions *were similar* between the two diets

Table 2. Effect of sainfoin silage on feed intake

Items	Dietary tre	Dietary treatment SE		P-value
	CON	SAIN		
Nutrient intake, (kg/d)				
DM	17.8	18.7	1.04	0.16
OM	16.3	16.6	0.94	0.53
Nitrogen	0.47	0.52	0.03	0.03
NDF	7.0	6.7	0.38	0.09
ADF	4.2	4.6	0.25	0.05

>DM, OM and NDF intake <u>were similar</u> between the two diets

>Nitrogen and ADF intake *were higher* in the SAIN diets

Table 3. Effect of sainfoin silage on nutrients digestibility

Items	Dietary treatment		SEM	P-value
	CON	SAIN	CCM	
Digestibility				
DM (g/kg)	727.9	688.2	0.4	0.002
OM (g/kg)	746.7	717.7	0.3	0.002
NDF (g/kg)	667.9	577.3	0.7	0.0004
ADF	658.2	573.5	1.3	0.009
Nitrogen	661.6	650.7	13.1	0.57

> The DM, OM, NDF and ADF digestibility were lower in the SAIN diet

Table 4 Effect of sainfoin silage on milk yield and composition

Items	Dietary treatment		SEM	P-value
	CON	SAIN	OLM	
Milk yield (kg/d)				
Milk	22.0	24.1	2.84	0.04
Milk/OM digested (kg)	1.8	2.0	0.11	0.03
FPCM	24.1	25.7	2.73	0.08
Milk composition (g/kg)				
Fat	48.5	47.0	1.43	0.21
Protein	35.4	33.9	2.20	0.07
Lactose	44.5	45.0	0.90	0.34

> Milk yield <u>was highest</u> in the SAIN diet

> Milk compositions <u>were similar</u> between the two diets

Table 5. Effect of sainfoin silage on methane emission

	Dietary treatment			
Items			SEM	P-value
	CON	SAIN		
CH ₄ , g/d	365.5	360.8	19.85	0.68
CH4, g/kg DMI	20.6	19.4	0.30	0.005
CH ₄ , g/kg milk	17.6	15.5	1.71	0.16
CH4, g/kg FPCM	15.8	14.4	1.18	0.22
CH ₄ , % of GEI	5.9	5.7	0.09	0.06

> CH_4 <u>was lowest</u> in the SAIN diet

> CH_4 as a percentage of GEI <u>tended to be lower</u> in the SAIN diet

Discussion

Nutrients digestibility

WAGENINGEN

 Scharenberg et al. (2007) also found that the apparent digestibility of OM, NDF and ADF were lower for lambs fed sainfoin silage (contained about 5g CT/kg DM), compared with lambs fed grass-clove silage. In our study, CT=8.8 g/kg DM

 CT may make complex with lignocellulose, thus preventing microbial digestion. CT could directly inhibiting cellulolytic microorganism and activities of fibrolytic enzymes (Patra and Saxena, 2009)

Methane production

 Woodward et al. (2002) found that CH₄ emission per kg DM in take was lower in the cows fed Hedysarum coronarium (CTcontaining forage), compared with cows fed perennial ryegrass.

- Saifoin contains CT, a plant secondary metabolite that have been show to reduces ruminal methanogenesis and decrease ruminal protozoa number in some study (Tavendate et al., 2005; Batta et al., 2009)
- Decrease fibre degradation → Reduced acetate → reduced H₂
 for CH₄ production (Beauchemin et al., 2009)

Sainfoin silage could be used in TMR diet to improve milk production and reduce CH4 per kg DM intake

EU Marie Curie Initial Training Network (LegumePlus PITN-GA-2011-289377)

Thank you kindly for your attention!

Vietnamese lotus flower

