

Stochastic simulation of alternative future blue fox breeding strategies

Jussi Peura

Jussi.peura@slu.se

Swedish University of Agricultural Sciences

EAAP 2015-Session 41

Introduction

Breeding goals in blue fox production:

Better fur quality:

New traits?

Production efficiency:

Feed efficiency

Welfare:

Front leg conformation

Better fertility:

Session 41_Peura

Introduction

Production structure:

- ✓ More than 95 % AI
- ✓ All farms have their own:
 - Database
 - BV evaluation (BLUP)
 - Female selection
 - Male selection
 - Mating planning
 - Some exchange of breeding animals between farms

Introduction

Production structure:

- ✓ 2014 common national database and BV evaluation (BLUP)
- ✓ But still all farms have their own:
 - Female selection
 - Male selection
 - Mating planning
 - Possibility to more accurate selection, especially males
 - Possibility to alternative selection strategies

Goal of the study

What happens to genetic gain and rate of inbreeding, if:

- New traits are included to the selection criteria?
- Male selection and mating is done across farms instead of within farm?
- Genotype information from male pups is used?

Traits in selection objective (all selection scenarios):

- ✓ Animal size at grading, scale 1-5
- ✓ Pelt quality, scale 1-5
- ✓ Litter size at birth
- ✓ Front leg conformation, scale 1-5
- ✓ Feed efficiency g growth / kg DM feed

Trait in new selection criteria (Scenarios II-V)

Selection scenarios

		Traits in selection criteria	Genotyping	Accuracy of Gbv		
Scenario I (Current)		3	no	-		
Selection of males and matings within farm						
Scenario II		5	no	-		
	a	5	yes	0.30		
Scenario III	b	5	yes	0.50		
	c	5	yes	0.80		
Selection of males and matings across the farms						
Scenario IV		5	no	-		
Scenario V	a	5	yes	0.30		
	b	5	yes	0.50		
	c	5	yes	0.80		

Selection scenarios III a-c and V a-c:

- Best 50 % of male pups were genotyped before actual male selection stage
- Direct genomic breeding value without simulating markers, genes or chromosomes was applied using pseudo-genomic method (Buch et al. 2012)
- Accuracies of GBV's were the same for all traits within each scenario

All scenarios had:

- ✓ 5 farms with equal herd size (1352 females, 140 males)
- ✓ Fixed age structure within farm and litter size:

Age (years)	Fem	nales	Males
	n (%)	Litter size	n (%)
1	600 (44)	7	92 (66)
2	352 (26)	9	34 (24)
3	200 (15)	9	14 (10)
4	128 (9)	9	-
5	72 (5)	8	-

Heritabilities, economic values, and genetic correlations:

Animal size
Pelt quality
Litter size
Front leg conf.
Feed efficiency

EUR/unit
8.43
26.08
14.91
0.00
0.40

h ²	
	l
0.32	
0.28	
0.12	
0.22	
0.25	

Pelt quality	Litter size	Front leg conf.	Feed efficiency
		1	
0.17	-0.10	-0.51	-0.09
	-0.05	0.00	0.05
		0.00	0.00
			-0.11

- 10 years, 50 replicates
- Average genetic gain and rate of inbreeding were estimated between years
 6 to 10
- Stochastic simulation by ADAM software (Pedersen et al. 2009) was used to estimate genetic gain and rate of inbreeding
- Breeding values were estimated multitrait animal model using DMU software (Madsen et al. 2006)

Genetic gain

- ✓ Scenarios with genotype information gives highest genetic gain (EUR)
 - Difference between within and across scenarios is small
- ✓ If feed efficiency is not included into the selection criteria, its gain is small
 - When included, differences between scenarios are small
- ✓ All scenarios lead decrease in front leg conformation
 - Inclusion of leg confomation into the selection criteria causes even bigger decrease (economic value = 0)

Rate of inbreeding

- ✓ The more information included, the lower is rate of inbreeding.
- ✓ Across farm scenarios resulted lower rate of inbreeding than within farm scenarios

To be improved

- Missing genetic correlations unlikely 0
 - Genetic gain on litter size may be overestimated
 - Value of total genetic gain may be overestimated
- ✓ True economic value of leg conformation is not 0
 - Desired gain?
- ✓ Genotyping 50 % of male pups is a lot
 - Testing of lower percentages

The next question/research topics are:

- ➤ How much does the improvements (update of genetic correlations, economic values and % of genotyped male pups) affect to the results?
- How much does it cost to built and run scenarios II-V?
- What is the profitability of each selection strategies?

Acknowledgements

- Co-authors Anders Cristian Sørensen, Kristian Meier and Lotta Rydhmer
- This project is funded by Finnish Fur Breeders Association

SUOMEN TURKISELÄINTEN KASVATTAJAIN LIITTO RY FINLANDS PÄLSDJURSUPPFÖDARES FÖRBUND RF

