Genomic prediction of heterosis in White Leghorn crosses

E. Nancy Amuzu-Aweh, P. Bijma, H. Bovenhuis & D.J. de Koning

Heterosis is essential in crossbreeding schemes

• Maximize heterosis \rightarrow which cross to make?

Can we predict heterosis?

- Long history with inconsistent results
- Based on limited number of markers/small data sets

Aim

Develop a predictor of heterosis:

- 1. At the line level
- 2. At individual sire level
- 3. Based on genomic regions affecting the trait

Assumption: Heterosis is solely due to dominance

1. Line-level heterosis

Heterosis is proportional to the **S**quared **D**ifference in **A**llele **F**requency (SDAF) between the parental lines

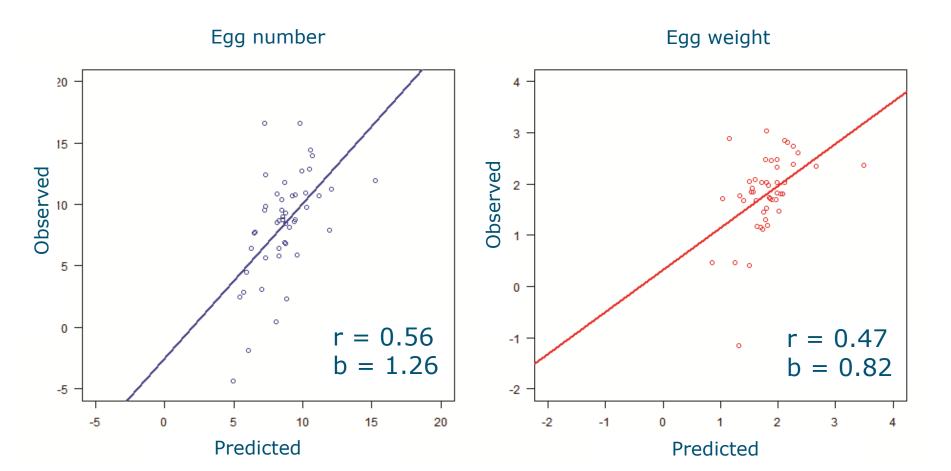
$$Heterosis_{ij,l} = d_l (p_{i,l} - p_{j,l})^2$$

d : dominance deviation

 $p_{i,l}$: allele frequency at locus *l* in parental line *i* $p_{j,l}$: allele frequency at locus *l* in parental line *j* Genome-wide SDAF: averaged over all SNP loci

(e.g. Falconer & Mackay, 1996)

Method


Predict heterosis

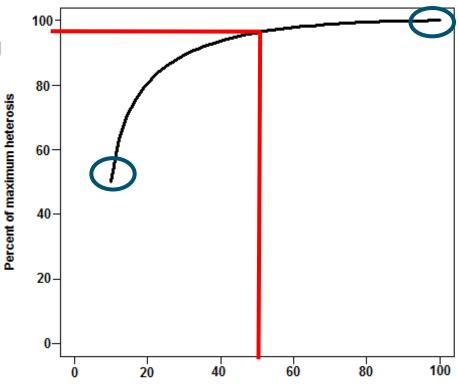
- ullet Regress crossbred phenotypes on SDAF o eta
- Predict future crosses: $\hat{\beta} \times SDAF$

Accuracy: correlation observed and predicted heterosis

- 47 crosses
- Leave-one-out cross-validation

Results for egg number and egg weight

Benefits of predicting line-level heterosis


Preselect crosses before field testing

Two-stage selection

- Stage 1: predicted heterosis
- Stage 2: field testing
- Final selected prop =10%

 $r_{\rm pred \ heterosis} = 0.5$

Pre-select 50% of crosses \rightarrow 96% of total heterosis

Proportion of animals selected in step 1 of selection (%)

Conclusions: line-level heterosis

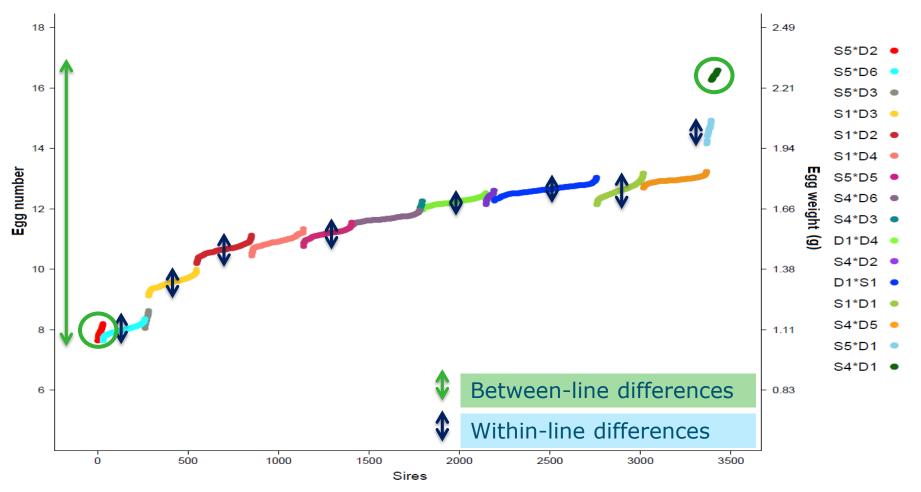
Genome-wide SDAF predicts heterosis in egg traits with an accuracy of ~0.5

Implement 2-step selection and save up to 50% on field tests

Can we exploit heterosis at the sire level?

- Utilise the variation between sires from the same pure-line
 - Allocate sires to dam lines

Sire-level heterosis


Heterosis depends on heterozygosity excess due to between- and within-line differences in allele frequencies

Heterosis_{ij,l} =
$$[(p_i - p_j)^2 + (p_{s_i} - p_i)(1 - 2p_j)] \bullet d_l$$

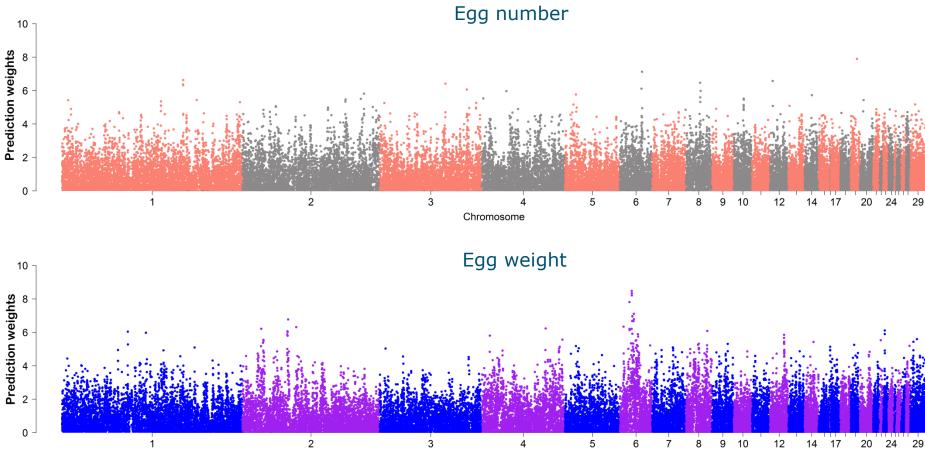
 p_i = allele frequency in sire line , p_{si} = allele frequency in the sire p_i = allele frequency in dam line

Genome-wide average

Results Predicted heterosis for egg number and egg weight

Conclusions: sire-level heterosis

Heterosis can be predicted at the sire level


But within-line sire differences contribute very little

3. Heterosis focussing on genomic regions

- GWAS to identify SNPs with effects on egg number and weight
 - Average effect
- Weighted SNPs by average effect (α) and SE(α)

Weighted SDAF_{ijk} =
$$SDAF_{ijk} * |\hat{\alpha}_k| * \frac{1}{se_k^2}$$

Resulting Weights

Chromosome

Results: weighting genomic regions

SDAF and SDAF_{weighted} have a correlation of 0.99

Little benefit from using SDAF_{weighted} based on average effects

Conclusions

Line-level prediction based on a genome-wide average SDAF can save 50% on field-testing

Prediction at the sire level or based on genomic regions not beneficial

esinam.amuzu@wur.nl

1. Line-level heterosis: data and models

Genotypes: Illumina chicken 60K SNP chip → 5 sirelines, 6 damlines

Phenotypes:

- 47 crosses
- ~76 000 cage-based records

Model:
$$y_{ijk} = \mu + sireline_i + damline_j + \beta \cdot SDAF_{ij} + ... + e_{ikj}$$

2. Sire-level heterosis: Data and models

Genotypes: Illumina chicken 60K SNP chip → 3427 sires (4 lines), 6 damlines **Phenotypes**:

- 16 crosses
- ~35 000 cage-based records

Model: $y_{s_i jk} = \mu + sireline_i + damline_j + \beta \cdot x_{s_i j} + \dots + e_{s_i jk}$

where
$$\bar{x}_{s_i j} = \frac{\sum_{n=1}^{N} [(p_i - p_j)^2 + (p_{s_i} - p_i)(1 - 2p_j)]}{N}$$

3. Heterosis considering genomic regions: data and models

Genotypes: Illumina chicken 60K SNP chip \rightarrow 3427 sires (4 lines), 6 damlines

Phenotypes:16 crosses, ~35 000 cage-based records

GWAS:

$$y_{s_i jk} = \mu + sireline_i + damline_j + cross_{ij} + \alpha \cdot (p_{s_i} + p_j - 1) + \dots + e_{s_i jk}$$

$$\hat{\alpha}$$
 = average effect per SNP

3. Heterosis considering genomic regions: data and models

Heterosis prediction:

$$y_{ijk} = \mu + sireline_{i} + damline_{j} + \beta \cdot SDAF_{wt,ij} + \dots + e_{ik}$$
where SDAF_{wt,ij} = $\sum_{1}^{N} (SDAF_{ijk} * \left(\frac{|\alpha_{k}| * \frac{1}{se_{k}^{2}}}{\sum_{1}^{N} \frac{|\alpha_{k}| * \frac{1}{se_{k}^{2}}}{N}}\right)$