

Optimal Contribution Selection in Breeding Schemes with Multiple Selection Stages

Binyam Dagnachew and Theo Meuwissen September 2015

66th EAAP Meeting, Warsaw, Poland

Background

- Management of inbreeding is vital because
 - -Decline in fitness
 - -Decline in genetic variation
- Key to animal breeding:
 - -balance inbreeding vs genetic gain
 - -Optimal Contribution (OC) selection

Background

- But OC selection assumes
 - one (final) selection step of parents
- In practice : often pre-selection steps
 - -account for consideration of relationship in final step

AIM

• Extend OC towards several selection stage

use OC selection at each stage?
 But what ΔF (restriction) to use?

Solution: simultaneously optimize all stages

OC selection & overlapp. gens

-Split population in q age classes (years)

-Control aver. relations & max gain in year t+1

- Years 1..q simply get one year older: 2..q+1
- Year 1 is defined by selection of parents => **optimise**

Several selection steps

- Optimise all selection stages same time:
 - -Some age_classes just become 1 year older
 - -Some age classes involve a selection stage
 - -Relationships of entire population are contrained
 - -Gain of entire population is maximised

Result: simulation (mimic sheep selection) \prod_{M+1}^{m}

- Case 1:
 - Stage 1: truncation
 - Stage 2: single stage OC selection
- Case 2:
 - Multi-stage OC selection

	Case 1	Case 2*	
Stage 1	273	273	 Results are same with respect to ΔG
Stage 2	19	21	
Genetic gain	2.41	2.40	Lower relationship with multi-stage OC
Relationship	0.1650	0.1579	multi stage oo
* AF=0 01			

- Dataset
 - # of candidates
 - Stage 1: 500
 - Stage 2: 33

Result: real sheep breeding dataset

- Case 1:
 - Stage 1: truncation
 - Stage 2:single-stage OC selection using stage 1 information
- Case 2:
 - Multi-stage OC selection

	Case 1	Case 2*	 Higher ΔG with multi-
Stage 1	273	273	stage OC
Stage 2	26	15	
Genetic gain	15.92	19.25	20.9%
* ΔF=0.01			

- Dataset
 - # of candidates
 - Stage 1: 1977
 - Stage 2: 346

Discussion

- Simultaneous optimization possible
- But, may not be practical
 - -Assumes simultaneous selection at all stages
 - -Practice do the preselection stage first
 - -If the actual selection is different from optimum
 - re-run OC with single (final) selection stage

Conclusions

multistage OC: optimises multistage selection

- Control of relationships
- Maximise gains

Sheep breeding example: extra gains

More than two selection stages :
 –Straightforward extension

Thank you!

Acknowledgements: NSG

