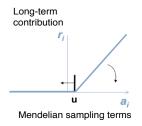
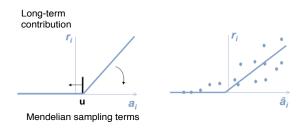
Mating strategies using genomic information reduce rates of inbreeding in animal-breeding schemes

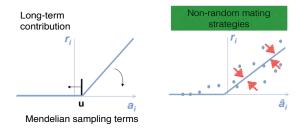
Huiming Liu Mark Henryon Anders Christian Sørensen


QGG, Aarhus University, Denmark

Sepetember 3, 2015

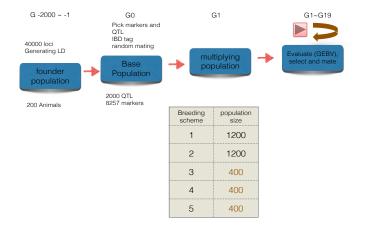

Mating strategies

- Optimize combinations of genetic materials
- Improve family structure
- May generate lower rates of inbreeding and/or higher genetic gain

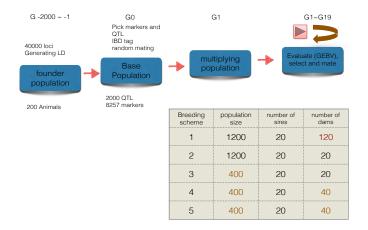

Genetic contribution theory

Genetic contribution theory

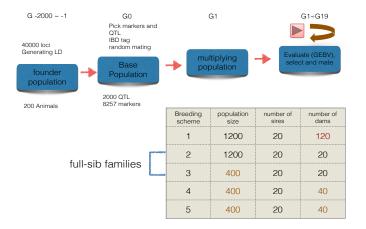
Genetic contribution theory

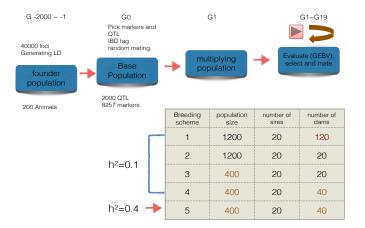

Mating strategies with genomic information?

- provide additional information on Mendelian inheritance
- increase independency
- \blacksquare closer alignment \rightarrow lower inbreeding



 The mating strategies using genomic information realizes lower rates of inbreeding without decreasing the genetic gain than using pedigree information


Experimental design Mating strategies Comparison criteria


Experimental design Mating strategies Comparison criteria

Experimental design Mating strategies Comparison criteria

Experimental design Mating strategies Comparison criteria

Experimental design Mating strategies Comparison criteria

Mating strategies

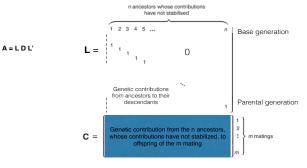
- MC:minimum-coancestry mating
- MCAC:mating by minimising the covariance between ancestral contributions

	MC MCAC	
Pedigree	MC_Ped	MCAC_Ped
Genomic	MC_Mrk	MCAC_Mrk

- $\bullet~$ MC_Ped and MCAC_Ped \rightarrow computing additive numeritor relationship A or genetic contribution C
- MC_Mrk and MCAC_Mrk \rightarrow computing genomic relationship ${\bf G}$ or genomic contribution ${\bf C}_{-{\bf Gen}}$ by LDL' decomposing ${\bf G}{\bf w}$
- random mating as the reference point

Experimental design Mating strategies Comparison criteria

genomic contribution


A=LDL'

 ${\bf L}$ is a lower triangular matrix and traces the flow of genes from one generation to the other.

It accounts only for direct (parent-offspring) relationships

Experimental design Mating strategies Comparison criteria

genomic contribution

(Henryon et al. 2009)

Experimental design Mating strategies Comparison criteria

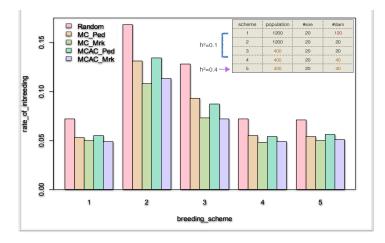
genomic contribution

A=LDL'

 ${\bf L}$ is a lower triangular matrix and traces the flow of genes from one generation to the other.

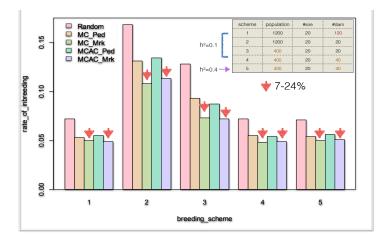
It accounts only for direct (parent-offspring) relationships

 $Gw{=}0.8^{*}G{+}0.2^{*}A,$ to keep it positive definite $Gw{=}$ LDL' C_{-Gen} is directly derived from L

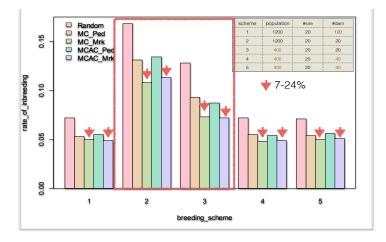

Experimental design Mating strategies Comparison criteria

Comparison criteria

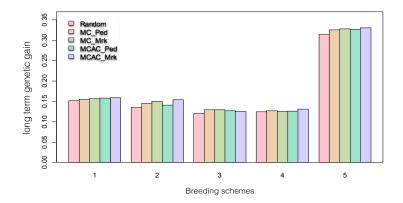
- Main comparison
 - Rates of inbreeding (ΔF)
 - The proportion of genome being IBD (true inbreeding)
 - Rates of long_term genetic gain (ΔG)
- Supporting analysis
 - Number of ancestors making genetic contributions to the offspring in generation 20


Rates of inbreeding Rates of gain Number of ancestors making genetic contributions

Rates of inbreeding (ΔF)


Rates of inbreeding Rates of gain Number of ancestors making genetic contributions

Rates of inbreeding (ΔF)


Rates of inbreeding Rates of gain Number of ancestors making genetic contributions

Rates of inbreeding (ΔF)

Rates of inbreeding Rates of gain Number of ancestors making genetic contributions

Rates of gain (ΔG)

Rates of inbreeding Rates of gain Number of ancestors making genetic contributions

Number of ancestors making genetic contributions

Scheme	RAND	MC_Ped	MCAC_Ped	MC_Mrk	MCAC_Mrk
1	41.24	43.69	43.64	46.56	46.06
2	7.93	9.76	9.77	10.58	10.49
3	10.41	12.03	12.07	12.88	13.06
4	19.24	21.75	21.71	22.72	22.30
5	21.31	23.23	23.11	23.72	23.70

Rates of inbreeding Rates of gain Number of ancestors making genetic contributions

Number of ancestors making genetic contributions

Scheme	RAND	MC_Ped	MCAC_Ped	MC_Mrk	MCAC_Mrk
	41.24	43.69	43.64	46.56	46.06
2	7.93	9.76	9.77	10.58	10.49
3	10.41	12.03	12.07	12.88	13.06
4	19.24	21.75	21.71	22.72	22.30
5	21.31	23.23	23.11	23.72	23.70

Conclusions

- Using genomic information source in MC or MCAC mating strategies can significantly reduce rate of inbreeding without compromising genetic gain
- It can be achieved without burdening breeding schemes with extra costs.
 - \rightarrow Genomic data should be applied to more than just genomic prediction.
- These mating strategies can be beneficial especially with full-sib families.
- Next step: investigate the optimal way to compute co-ancestry and genetic contributions using genomic information.

Thank you very much!

Table S1. The average of variance of genetic contributions per offspring and the average of the sum of covariance of ancestral contributions over all of the offspring based on 20 replicates.

	RAND	MC_Ped	MCAC_Ped	MC_Mrk	MCAC_Mrk
VAR	0.0117	0.0062	0.0076	0.0054	0.0055
cov	0.0437	0.0350	0.0326	0.0311	0.0308