

Strategic genotyping of cow groups to improve reliability of genomic predictions

Edel, C., Pimentel, E., Plieschke, L., Emmerling, R. and Götz, K.-U., Institute for Animal Breeding

Preliminary study: Leading question

- Routinely genotyping a random sample of the female offspring of each AI bull and ...
- including the genotypes and phenotypes into the reference population:
- What is the benefit with respect to the accuracy of selection of a young bull?

Deterministic approach on ,nuclear pedigrees'

Nuclear pedigree (nucped):

Methods

- From several thousand nucpeds identified in FV database:
 - Randomly selected 100
- Step 1: With extracted genotypes from data-base
 - Calculated 'mini' G-matrix for each nucped
 - Made assumptions about information content of DYD
 - Solved for model reliability of the candidate
 - Averaged over 100 nucpeds: R² of base design (R²_b)

Deterministic approach on ,nuclear pedigrees'

Base design:

Methods

- Step 2: Generation of daughter genotypes (S/GS/GGS)
 - ✓ Sampling paternal haplotypes from sires's haplotypes
 - ✓ Sampling maternal haplotypes from haplotype library
 - Calculated extended G-matrix
 - Made assumptions about number of daughters now gt/pt (adjusted ,residual' DYD)
 - Solved for model reliability of the candidate
 - Averaged over 100 nucpeds: R² of extended design (R²_e)

Deterministic approach on ,nuclear pedigrees'

Extended design:

Methods

Calculating of the marginal reliability contribution:

$$R_{\rm m}^2 = \frac{R_{\rm e}^2 - R_{\rm b}^2}{R_{\rm e}^2 R_{\rm b}^2 + 1 - 2R_{\rm b}^2}$$

(Harris & Johnson, 1998)

- ☐ Makes reliability contribution independent of level of base R²
- Simplifies comparability of R² contributions

Designs investigated

			gs/ggs generation		sire generation		
Design	scenario	h²	nDau	nGeno	snDau	snGeno	
	S	.35	1000	0	50/100/200/500	50/100/200/500	
D _P	S-GS-GGS	.35	1000	50/100/200/500	50/100/200/500	50/100/200/500	
	GS-GGS	.35	1000	50/100/200/500	0	0	
D _F	like $\mathbf{D_p}$ except $h^2 = .05$						
	S	.25	200	0	50/100	50/100	
D _{CM}	S-GS-GGS	.25	200	50/100	50/100	50/100	
	GS-GGS	.25	200	50/100	0	0	
D _{CL}	like $\mathbf{D}_{\mathbf{CM}}$ except $h^2 = .10$						

D_P: production trait design **D**_F: fitness trait design

 \mathbf{D}_{CM} : conformation trait design (moderate h^2)

D_{CL}: conformation trait design (low h²)

Designs investigated

			gs/ggs generation		sire generation	
Design	scenario	h²	nDau	nGeno	snDau	snGeno
	S	.35	1000	0	50/100/200/500	50/100/200/500
D _P	S-GS-GGS	.35	1000	50/100/200/500	50/100/200/500	50/100/200/500
	GS-GGS	.35	1000	50/100/200/500	0	0
D _F			All cor			
	S	6	extended	50/100		
D _{CM}	S-GS-GGS			50/100		
	GS-GGS)		
D _{CL}	like $\mathbf{D}_{\mathbf{CM}}$ except $h^2 = .10$					

D_P: production trait design **D**_F: fitness trait design

 \mathbf{D}_{CM} : conformation trait design (moderate h^2)

D_{CL}: conformation trait design (low h²)

		D _P (h ² =.35)			D _F (h² =.05)	
	geno	typed daughter	s for	geno	typed daughter	rs for
nGeno	S	s-gs-ggs	GS-GGS	S	s-gs-ggs	GS-GGS
50	4 (0/9)	10 (5/24)	7 (4/15)	1 (0/2)	2 (1/4)	1 (1/2)
100	7 (3/12)	17 (12/33)	11 (7/21)	2 (0/4)	4 (2/7)	2 (1/5)
200	12 (7/27)	26 (17/38)	17 (11/27)	3 (1/6)	6 (4/9)	4 (2/6)
500	19 (12/28)	40 (28/55)	29 (19/43)	5 (3/9)	12 (7/17)	8 (5/14)

		D _P (h ² = .35)			D _F (h² =.05)	
	genotyped daughters for			geno	typed daughter	rs for
nGeno	S	S-GS-GGS	GS-GGS	S	S-GS-GGS	GS-GGS
50	4 (0/9)	10 (5/24)	7 (4/15)	1 (0/2)	2 (1/4)	1 (1/2)
100	7 (3/12)	17 (12/33)	11 (7/21)	2 (0/4)	4 (2/7)	2 (1/5)
200	12 (7/27)	26 (17/38)	17 (11/27)	3 (1/6)	6 (4/9)	4 (2/6)
500	19 (12/28)	40 (28/55)	29 (19/43)	5 (3/9)	12 (7/17)	8 (5/14)

		D_{CM} (h ² = .25)		D_{CL} (h ² = .10)			
nGeno	S	s-gs-ggs	GS-GGS	S	s-gs-ggs	GS-GGS	
50	3 (0/11)	8 (2/18)	5 (3/15)	2 (0/5)	4 (1/7)	3 (1/7)	
100	6 (2/13)	12 (8/22)	9 (6/16)	3 (1/7)	6 (3/10)	5 (3/9)	

		D_{CM} (h ² = .25)	←	D_{CL} (h ² = .10)			
nGeno	S	S-GS-GGS	GS-GGS	S	S-GS-GGS	GS-GGS	
50	3 (0/11)	8 (2/18)	5 (3/15)	2 (0/5)	4 (1/7)	3 (1/7)	
100	6 (2/13)	12 (8/22)	9 (6/16)	3 (1/7)	6 (3/10)	5 (3/9)	

Conclusion

- Genotyping a random sample of daughters of every AI bull can increase the accuracy of selection of young bulls.
- ☐ The magnitude of the contribution is a function of
 - the number of meioses between the animals providing the information and the candidates
 - the heritability of the trait (e.g. Hayes et al., 2009)

Conclusion

- Considerable contributions will be achieved
 - with higher heritabilities
 - with a large amount of genotyped daughters
- Strategy lends itself to broad genotyping with lower densities
- But: The effective contribution does depend on the magnitude of reliability already achieved with the existing design
 - Small reference population or high N_e (e.g. Thomasen et al., 2014)

Outlook

- Aspects currently under investigation:
 - Impact on validation reliability in forward prediction
 - Cumulative effects in a population (\rightarrow R² from LD?)
 - Benefits in other paths of selection
 - Increased relative importance in scenarios with strong selection (→ selection within families)
 - Potential surplus: bias-control

Outlook

- Aspects currently under investigation:
 - Impact on validation reliability in forward prediction
 - Cumulative effects in a population (\rightarrow R² from LD?)
 - Benefits in other paths of selection
 - Increased relative importance in scenarios with strong selection (→ selection within families)
 - Potential surplus: bias-control

Thank you for your attention

We gratefully acknowledge:

- Arbeitsgemeinschaft Süddeutscher Rinderzucht- und Besamungsorganisationen for financial support within the research cooperation "Zukunftswege"
- Contributors of the genotype pool Germany-Austria

