Modelling Phosphorous digestion, retention & excretion in pigs

Ilias Kyriazakis, Vasilis Symeou & Ilkka Leinonen

School of Agriculture, Food and Rural Development Newcastle University, England

Why are we interested in Phosphorous?

Supplementation of inorganic P is: (1)Expensive (2)Non-renewable resource

Environmental degradation: **Eutrophication**

Environmental degradation causes bad publicity

Do we need another P model?

- Currently there are (at least) three very good
 P digestion models in the literature
- Their limitations are:
 - 1. P intake is an input
 - 2. They do not account for pig genotype (and hence maximum retention)
 - 3. There is no link between P retention and retention of other body components
 - 4. The predictions do not distinguish between the different forms of P excreted

The necessary steps to predict P excretion

- 1. Describe feed composition in necessary and consistent terms
- 2. Describe the animal in sufficient terms to estimate (maximum) rates of P deposition (Requirements)
- 3. Develop a P digestion module
- 4. Predict the different forms of P excreted

Description of feed composition

- Total P (g/kg)
 - total phytate P (oP)
 - total non- phytate P (NPP) (g/kg)
- Total Calcium (Ca) (g/kg)
- Total phytase content (FTU)
 - Amount of plant phytase e.g. wheat
 - Amount and origin of exogenous phytase addede.g. E. coli or A. niger
 - Extent of inactivation of feed phytases

Estimation of P Requirements

1. Estimate Ph Requirements for maintenance (P_{maint})

$$P_{\text{maint}} = p \cdot Pr \cdot Pr_{\text{m}}^{-0.27}$$

- 2. Estimate the net efficiency of P use for growth Current estimates range from 0.7- 0.97
- 3. Estimate the maximum capacity for P deposition (PR_{max})

P retention was made an isometric function of protein retention

The necessary steps to predict P excretion

- Describe feed composition in necessary and consistent terms
- Describe the animal in sufficient terms to estimate maximum rates of P deposition (Requirements)
- 3. Develop a P digestion module
- 4. Predict the different forms of P excreted

Schematic description of the model of phosphorus intake, retention and excretion

Three central relationships to solve

- 1. The amount of oP dephosphorylated by *plant* phytase activity
- 2. The amount of oP dephosphorylated by *microbial* phytase activity
 - It was assumed that the effects of plant and microbial phytases are additive
- 3. The amount of oP bound by Ca in the small and large intestine
 - It was assumed that NPP has a lower affinity than oP to Ca

The effect of exogenous phytase on oP dephosphorylation

The effect of dietary Ca on small intestine of deposphorylation

The response to di-Calcium phosphate supplementation

The relationship between exogenous phytase and faecal P excreted

Feacal P excreted by soyabean based diets supplemented with phytase

Feacal P excreted by canola based diets supplemented with phytase

Interim Conclusions

- A deterministic, dynamic model that predicts P intake, digestion, retention and excretion has been developed
- The model is applicable to pigs of different genotypes given access to diets of very different compositions
- The model does not make accurate predictions for pigs offered access to rapeseed-based diets
 - Is the description of the feed adequate?