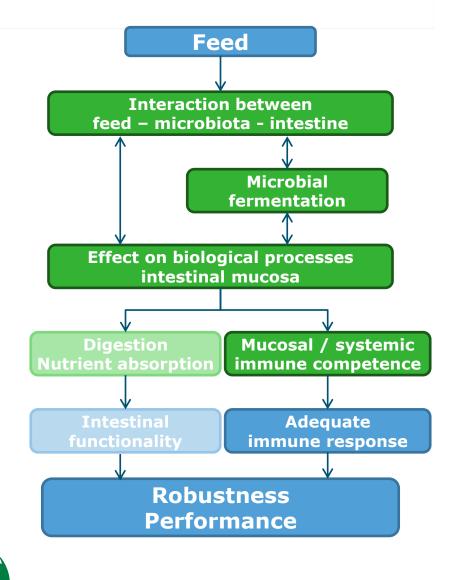

Data mining of *in vitro* and *in vivo* dietary intervention datasets

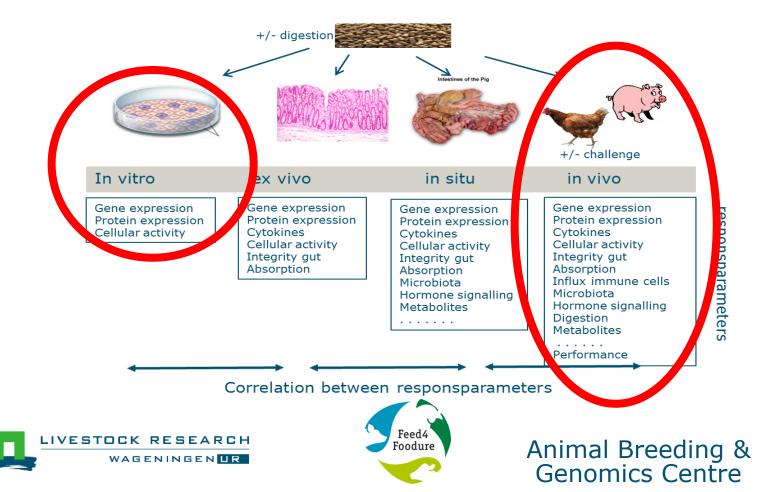
Dirkjan Schokker, Ilonka Wijers, Mari Smits, and Marcel Hulst

Acknowledgements



Background

- Goal of Feed4Foodure
 Determine immune
 competence of livestock
 after dietary interventions
- Immune competence potential to adequately respond to stimuli


Animal Breeding & Genomics Centre

Foodure

Objective

Identify overlap in the response between in vitro and in vivo dietary interventions

in vitro \rightarrow IPEC-J2 cells

gene	hrs	Salm./M	ZnO/M	ZnO-Salm./M	Oct/M	Oct-Salm./M	5% rye-Salm./5% rye
IL8	2	ተተ	$\downarrow\downarrow$	_	↑	↑	_
CXCL2	2	ተተ	\uparrow	↑	\uparrow	↑	\checkmark
CXCL2	6	↑	$\downarrow\downarrow$	↑	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	_
CSF2	2	ተተ	$\uparrow\uparrow$	↑	$\uparrow\uparrow$	$\uparrow\uparrow$	_
CSF2	6	↑		_		_	$\uparrow\uparrow$
IL1A	2	ተተ	↑	-	↑	↑	_
IL1A	6	ተተ	$\downarrow\downarrow$	_	$\downarrow\downarrow$	$\downarrow\downarrow$	_
IL6	2	_	\checkmark	_	\checkmark	\checkmark	\checkmark
IL6	6	_	_	↑	\checkmark	\checkmark	_
CCL20	6	↑	\checkmark	-	_	\checkmark	_
IFNA4	2	_	_	_	_	_	↓↓ *
IFNA4	6	\checkmark	-	$\uparrow \uparrow$	_	_	_
IFNL1	2	_	$\uparrow\uparrow$	-	_	_	_
IFNL1	6	_	_	-	$\uparrow\uparrow$	$\uparrow\uparrow$	_
IL18	6	\checkmark	_	\checkmark	_	↑	_
IL21	6	↑	_	$\uparrow \uparrow$	_	_	_
IL1B	6	_	_	$\uparrow \uparrow$	_	_	-
LTA	6	-	-	$\uparrow\uparrow$	-	-	-

Modulation of Salmonella-induced cytokine/chemokine response by additives.

System is able to express a range of immune parameters

Approach - Data mining + resources

Results (1) Separate analysis

in vitro

vs.		<i>in vitro</i> 2h	<i>in vitro</i> 6h	
ZnO	Mock	178	722	
Amox.	Mock	92	707	
10%rye	Mock	571	23	
5%rye	Mock	208	28	
10%rye	5%rye	125	47	

Number of differential expressed genes

in vivo

V	S.	Time 1	Time 2	
ZnO	Control	101	11	
ZnO	Control	20	11	
Amox.	Control	54	38	
10%rye	Control	239	223	
5%rye	Control	320	34	
10%rye	5%rye	48	192	

Results (2) Overlap

		Genes		Pathways	
<i>in vivo</i> comparison	Day	<i>in vitro</i> 2h	<i>in vitro</i> 6h	<i>in vitro</i> 2h	<i>in vitro</i> 6h
Zinc/Control	23	4_1*	3_3*	7_1*	2_0*
Zinc/Control	35	0_1*	2_1*	2_3*	2_4*
Rye; 10%/Control(0%)	1	11	1	1	1
Rye; 5%/Control(0%)	21	9	1	4	2
Rye;10%/5% day 21	21	0	0	1	0
Rye; 10%/Control(0%)	28	8	0	3	3
Rye; 5%/Control(0%)	28	1	0	0	0
Rye;10%/5%	28	6	0	4	0
Amoxicillin/Control	5	0	1	2	2
Amoxicillin/Control	14	0	2	1	1

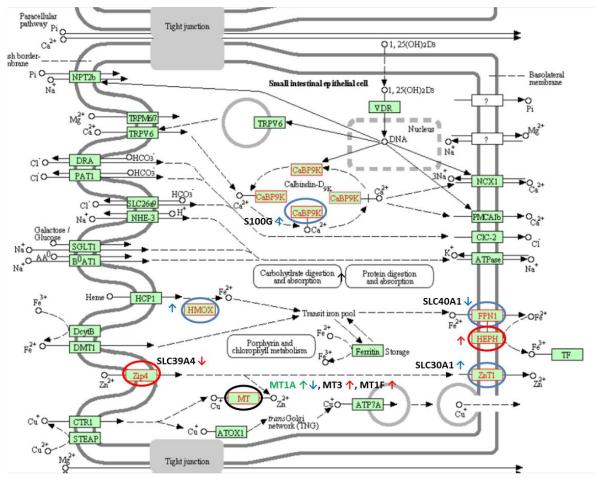
Dietary interventions tested

Zinc supplementation

- Improve health
- Decrease incidence of post weaning diarrhoea

Increasing rye concentrations

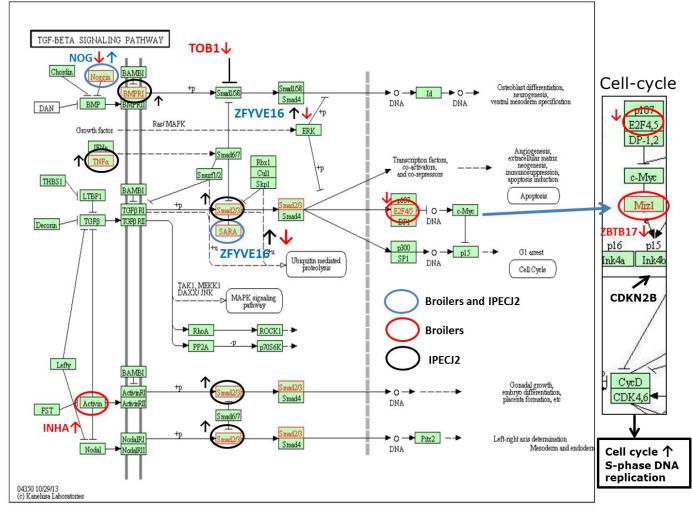
- Higher viscosity
- Anti-nutritive activity
- Positive effect intestinal mucosal immunity


Addition of amoxicillin

- Perturb microbial community
- Immune development

Zinc - Mineral absorption pathway

Jejunum 23 days; SLC39A4, MT1A, MT3, MT1F / Ileum 23 days; HEPH, SLC39A4, MT1A, MT3, MT1F / Ileum 35 days; MT1A


IPEC-J2 2 hrs; MT1A 个, HMOX1, SLC40A1

IPEC-J2 6 hrs; MT1A ↓, S100G

Rye - TGF-beta signalling

Amoxicillin

Reactive oxygen species (ROS) was found to be the overlapping process, ROS may activate CREB activity which may lead to apoptosis

- Disturbs the microtubule filaments in cells of the intestinal mucosa (maybe even barrier function)
 - Down-regulation of the STMN1 gene, responsible for induction of "MTub catastrophe"

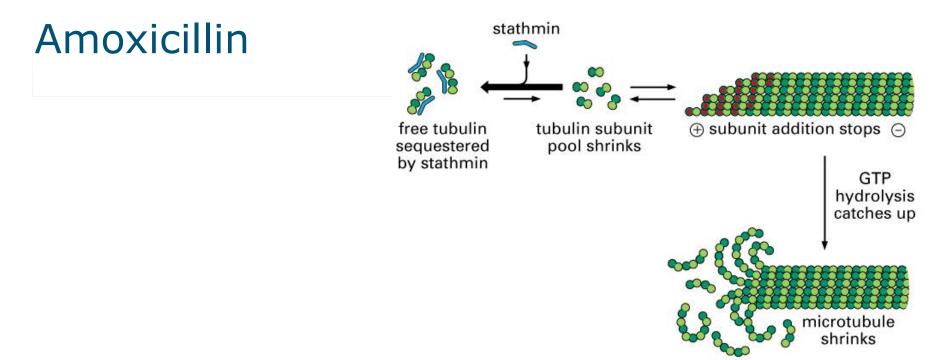


Figure 16–31. Molecular Biology of the Cell, 4th Edition.

- Disturbs the microtubule filaments in cells of the intestinal mucosa (maybe even barrier function)
 - Down-regulation of the STMN1 gene results in less disassembly

Dietary interventions tested

Zinc supplementation

- Improve health
- Decrease incidence of post weaning diarrhoea

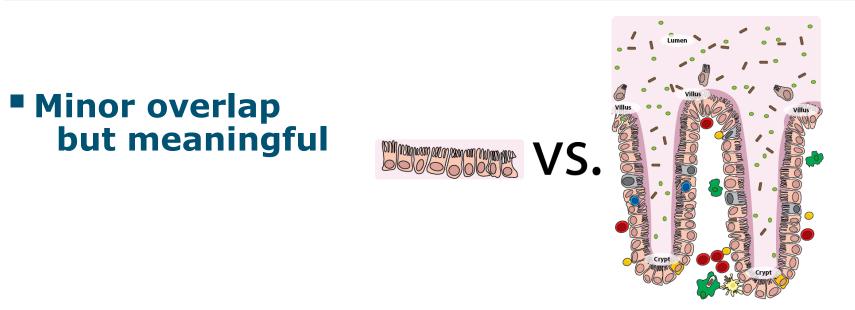
Increasing rye concentrations

- Higher viscosity
- Anti-nutritive activity
- Positive effect intestinal mucosal immunity

Addition of amoxicillin

- Perturb microbial community
- Immune development

Animal Breeding & Genomics Centre


Overlap analysis

Immune

Cell Proliferation

No direct effects

- Insight in direct effect on epithelial cells
 - Almost no direct effect of amoxicillin
- Stress response / ingredient specific?

Discussion

in vitro vs. in vivo predictive value limited in this set up

- Alternatives to in vitro models to better mimic in vivo
 - Mixed cell cultures
 - Organoids
 - Small Intestinal Segment Perfusion

Focus on direct effects

Thank you for your attention

