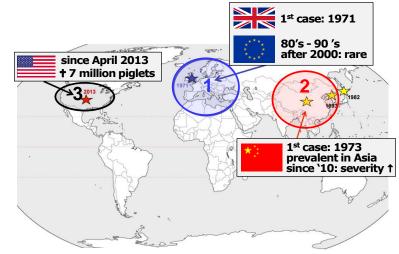


igletfee

European Federation for Animal Science Annual Meeting 2015

66th EAAP 31/8-4/9 2015 Warshaw, PL

Inactivation of porcine epidemic diarrhea virus (PEDV) by heat-alkalinity-time (HAT) pasteurization


Quist-Rybachuk GV¹, Nauwynck HJ¹, <u>Kalmar ID</u>² ¹Laboratory of Virology, Ghent University, BE ²Veterinary R&D, Veos group, BE

Natural ingredients

Isabelle.Kalmar@Veos.be

Porcine Epidemic Diarrhea Virus (PEDV)

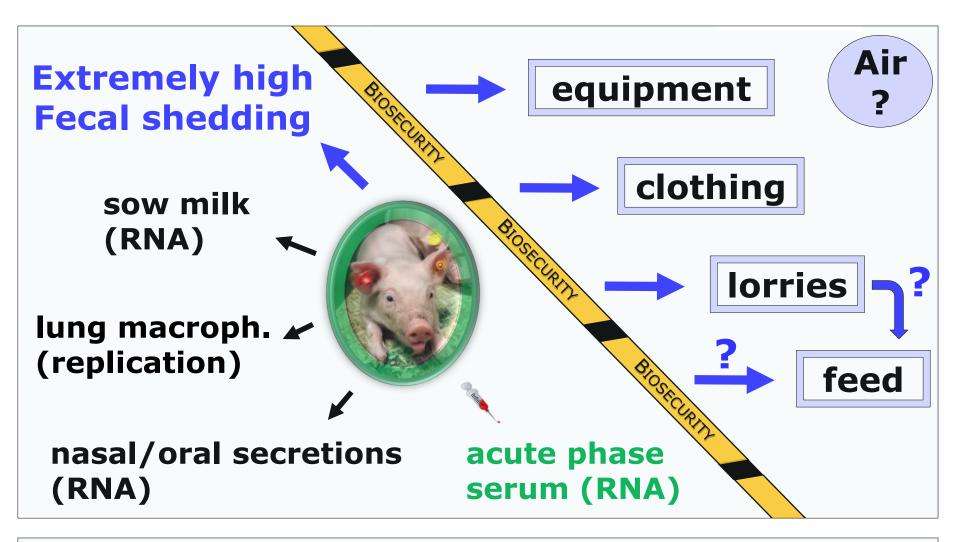
- swine alfa-corona virus
- faecal-oral transmission
- highly enteropathogenic
 - → villus atrophy
 - → acute, watery diarrhea

After Opriessnig, 2014

- Clinical outcome depends on age at infection (virus strain, lactogenic immunity, co-infections, ...)
 - neonatal & suckling : up to 100% mortality
 - □ weaners to adults : (usually mild) self-limiting
 - gestating sows : reproductive performance +

Transmission of PEDV by feed

- US Field cases with entirely vegetal diets (Dee et al., 2014)
 Feed-borne (corn, SBM and Vit & Min diets)
- Ontario cases (USA → Eastern Canada)
 - Epidemiology: feed-borne transmission
 - <u>Infectious</u> PEDV in <u>SDPP</u> sampled at a <u>feedmill</u>
- **(Pasick et al., 2014)**
 - Non-infectious PEDV in SDPP at the production plant (US FDA, 2014)


Matrix

Effect

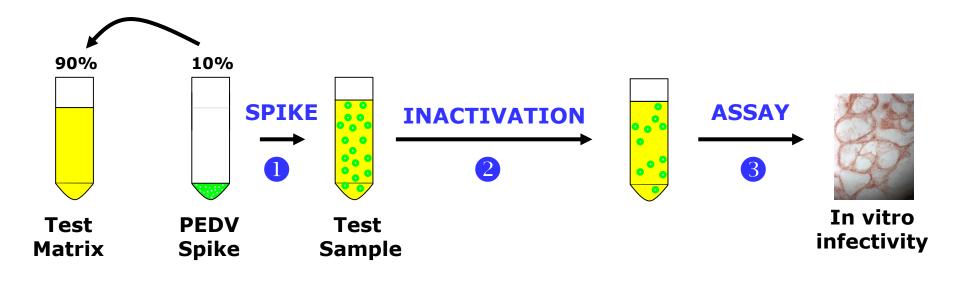
PEDV is sensitive to spray-drying and dessication
 SDPP was produced 10 wks prior to Ontario cases

Ingredient specific sensitivity (Dee et al., 2015) outdoor storage (-25 to +20 °C): $10^{4.2}$ TIC₅₀/g inactivation: SDPP < 7 d vs SBM < 210 d (>180 d)

Porcine Epidemic Diarrhea Virus (PEDV)

Adequate biosafety measures should <u>also</u> be in place for feed and its ingredients

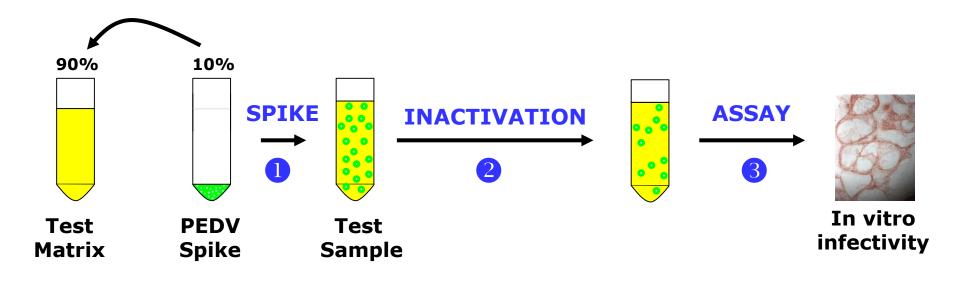
Sensitivity of	Sensitivity of PEDV to HAT-pasteurisation						
<u>H</u> eat	<u>A</u> lkalinity	<u>T</u> ime	<u>Matrix</u>				
Product temp		Holding time	product				
[T _{IN} ; T _{OUT}]	[pH _{IN} ; pH _{OUT}]	[flow]	[plasma]				


Completely characterised proces

Enables

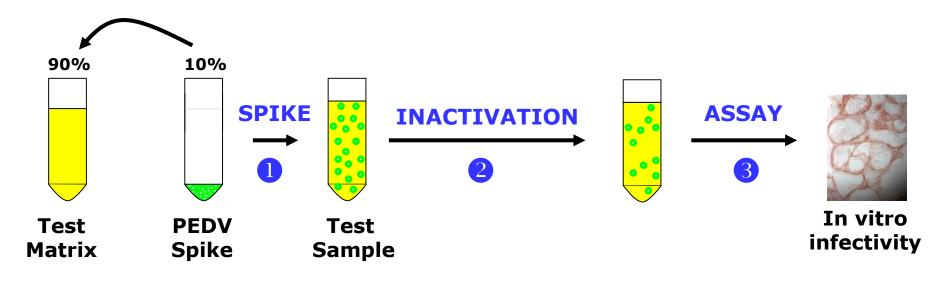
Laboratory replication of industrial conditions

Determination of sensitivity of PEDV D-value = time needed to inactivate 90% of initial infectivity (1 log)


Materials & Methods: Spike Inactivation Assays

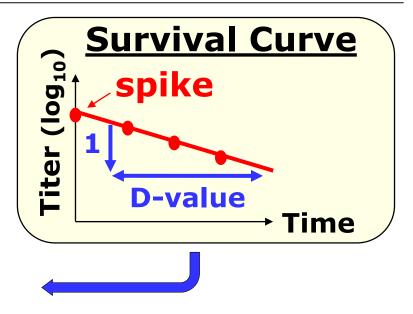
Test-samples: matrix + virus (9:1-ratio) Matrix: • Minimum Essential Medium (MEM) • porcine plasma

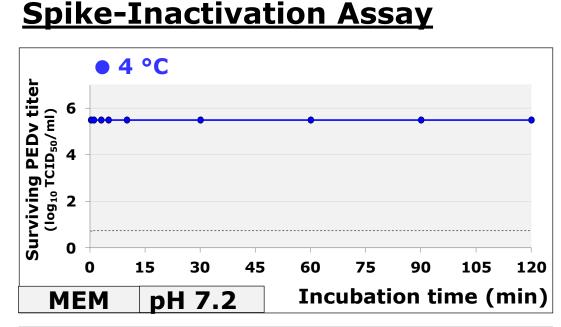
sterile filtered heat inactivated seronegative for PEDV

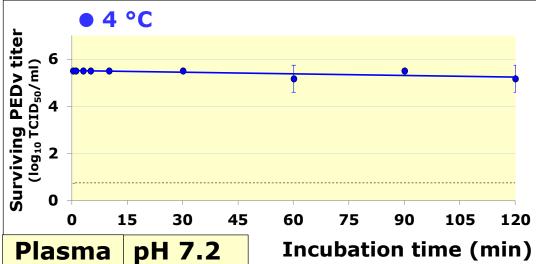

Materials & Methods: Spike Inactivation Assays

2 Inactivation (treatment)

cate	<u>Condition</u> pH 7.2, 9.2 or 10.2 Temperature 4, 40, 44 or 48°C					
iplic	Duration	8 time-points up to 120 min (0.25, 1, 3, 5, 10, 30, 60 or 120 min)				
Ĕ	<u>Matrix</u>	MEM or porcine plasma				

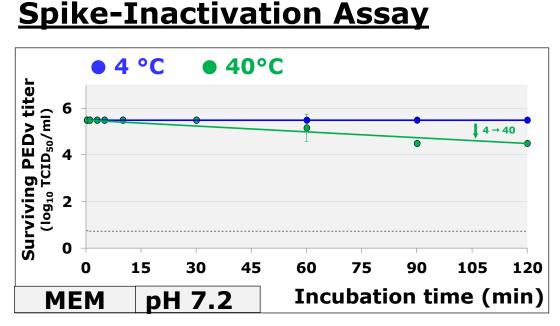

Materials & Methods: Spike Inactivation Assays

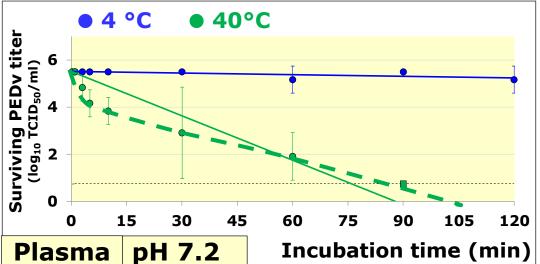



B Virus titration

- residual infectivity
- whole test-sample
- end-point dilution assay
- 96-well plates

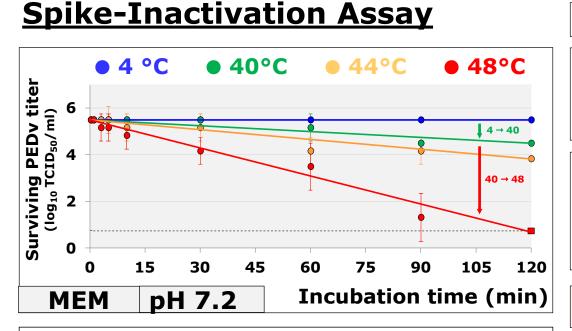
Confirmation assays D-value, PEDV sterility





Sensitivity of PEDV

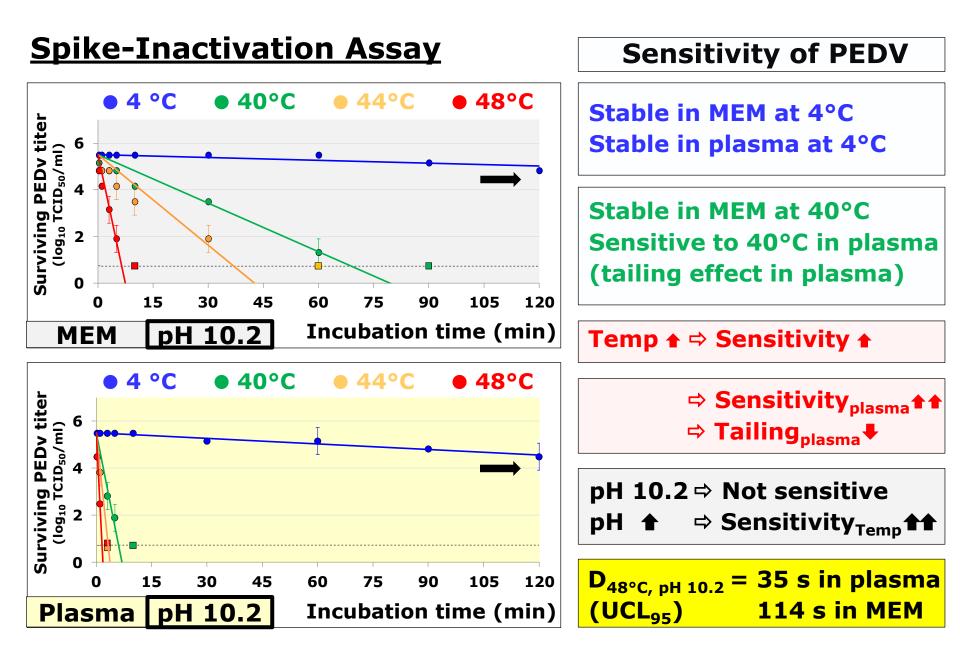
Stable in MEM at 4°C Stable in plasma at 4°C



Sensitivity of PEDV

Stable in MEM at 4°C Stable in plasma at 4°C

Stable in MEM at 40°C Sensitive to 40°C in plasma (tailing effect in plasma)



4 °C **40°C 48°C 44°C PEDv titer** 6 (log₁₀ TCID₅₀/ml) Surviving 2 0 0 15 30 45 60 75 90 105 120 Incubation time (min) Plasma pH 7.2

Sensitivity of PEDV

Stable in MEM at 4°C Stable in plasma at 4°C

Stable in MEM at 40°C Sensitive to 40°C in plasma (tailing effect in plasma)

Results and Discussion: Confirmation assays

Spike-inactivation assay in tissue culture flasks

HAT determinants: $H = 48^{\circ}C$; A = pH 10.2; T = 2.5 min and T = 5 min

 Confirmation of D value 									
Matrix	SpikeVolpHTempTimeSurviving PEDVMeasured D value			Expected D value					
	(log ₁₀ TCID ₅₀)			(°C)	(min)	#	(sec or min)	mean	[UCL95]
Plasma	7.37	10 ml	10.2	48	2.5	4	23 sec	20	[35] sec
Plasma	7.65	1 ml	10.2	48	2.5	25	25 sec	20	[35] sec

- Measured D value (23-25 sec) < UCL₉₅ of expected D value (35 sec)
- D value is not dependent on test volume or magnitude of virus spike
- Similar results in confirmation assays of other HAT determinants

In other words start (spike) over 31 million infectious particles is reduced to 25 infectious particles in 2.5 min HAT-pasteurisation

Results and Discussion: Confirmation assays

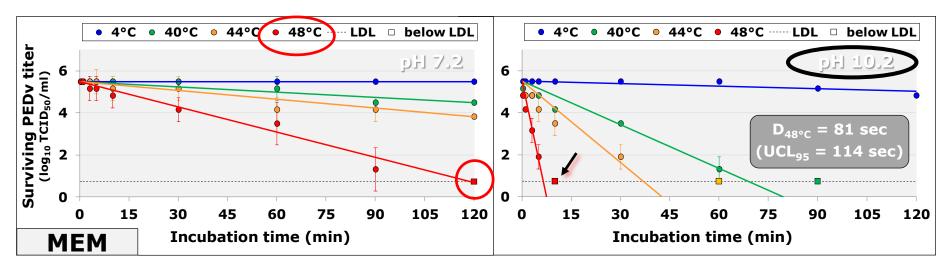
Spike-inactivation assay in tissue culture flasks

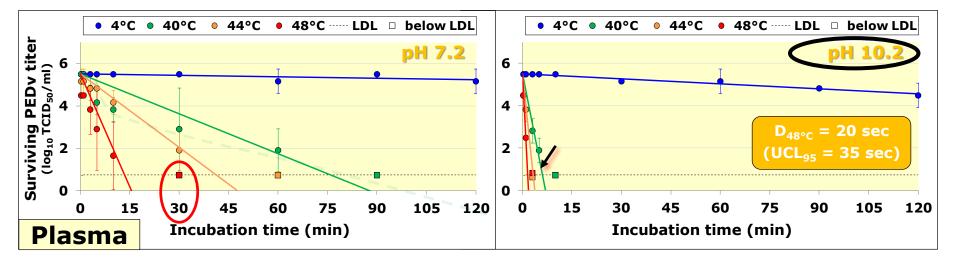
HAT determinants: $H = 48^{\circ}C$; A = pH 10.2; T = 2.5 min and T = 5 min

Matrix	Spike	Vol	рН	Temp (°C)	Time (min)	Surviving PEDV # PFU	Sterility obtained ? (yes/no)	Expected time to sterility		
	(log ₁₀ TCID ₅₀)							mean	[UCL95]	
Plasma	7.37	10 ml	10.2	48	5	0	YES	2.4	[4.2] min	
Plasma	7.65	1 ml	10.2	48	5	0	YES	2.5	[4.4] min	

Results and Discussion: Confirmation assays

Spike-inactivation assay in tissue culture flasks


HAT determinants: $H = 48^{\circ}C$; A = pH 10.2; T = 2.5 min and T = 5 min


 Confirmation of obtained PEDV sterility 									
Matrix	Spike	Vol	рН	Temp	Time	Surviving PEDV	Sterility obtained ?	Expected time to sterility	
	(log ₁₀ TCID ₅₀)			(°C)	(min)	# PFU	(yes/no)	mean	[UCL95]
Plasma	7.37	10 ml	10.2	48	5	0	YES	2.4	[4.2] min
Plasma	7.65	1 ml	10.2	48	5	0	YES	2.5	[4.4] min
Additio	nal assay								
Plasma	5.80	1 ml	10.2	48	4	0	YES	1.9	[3.4] min
Plasma	5.80	1 ml	10.2	48	3	0	YES	1.9	[3.4] min
	_				•				

Time to sterility occured within the expected time

Summary

Spike-Inactivation Assay - survival curves

Conclusions

- 1. Inactivation of PEDV is facilitated in plasma
- 2. Inactivation assays should take matrix into account
- 3. HAT-pasteurisation at H_{48°C}A_{pH10.2}T_{10min}
 ⇒ Inactivates 17.4 log₁₀ TCID₅₀ / ml plasma

(Quist-Rybachuk et al., submitted 2015)

4. PEDV is highly sensitive to HAT-pasteurisation, a redundant additional safety-step ?

Standard processing of SDPP

Spray-Drying (Gerber *et al.*, 2014; Pujols and segalés, 2014)

 \Rightarrow Inactivates min 4.2 log₁₀ TCID₅₀ / ml plasma

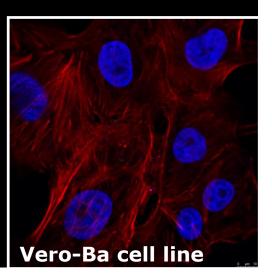
Storage at low Aw (Pujols and segalés, 2014)

⇒ Inactivates min 2.8 log₁₀ TCID₅₀/g SDBP in 3 w-4°C, 2 w at 12°C, 1 wk at 21°C

Further Take Home Messages

- 1. ALL ingredient types can be vectors of PEDV (vegetal (Dee et al., 2014), animal (Pasick et al., 2014), micro-ingredients) Risks of feedborne transmission of PEDV are NOT limited to animal-based ingredients.
- 2. Inactivation of event. infectious agents is <u>anticipated</u> in the processing of animal-based ingredients. Processing implies a safety-guarantee, not a safety-risk.
- 3. Securing feed-safety necessitates proper biosecurity <u>at all points</u> of the distribution chain.
- 4. PCR-tests do not inform on virus infectivity, they inform on standard necessity of processing.

Acknowledgments


PEDV syncytium

— cell nuclei

PEDV virions

 $\ensuremath{\mathbb{C}}$ Veos NV

pan 5

