Statistical models to increase disease resilience and uniformity in animal production

Han Mulder

han.mulder@wur.nl

Animal Breeding and Genomics Centre

Increasing disease resilience is challenging

- Genetic component on resistance
 - Ability of the animal to combat diseases
- Genetic component on tolerance
 - Ability of animal to minimize negative effects of disease and keep reduction in production minimal
- Both require data on amount of pathogen
 - Disease data is scarce
 - Data on pathogen burden even more scarce

Can we use fluctuations in production? We can detect outbreaks.

Number born alive

Rashidi et al. 2014

Variation related to level of challenge

Level of challenge

Reaction norm model

 $y = fixed \ effects + a_{intercept} + a_{slope}CL + e$

Variation over time

Time (parity)

• Uniformity model (DHGLM) $y = fixed \ effects + a_{mean} + e \longleftarrow Ve = \exp(fixed + a_{variance})$

Objectives

To quantify genetic variation for litter size:

- in response to (disease) challenges in pigs
- in uniformity
- To investigate response to selection in disease resistance and tolerance using:
 - reaction norm model
 - uniformity model

Reaction norm model: Variance components with increasing challenge load

 WAGENINGEN

 For quality of life

Herrero-Medrano et al., 2015

Selection in a different environment

Genetic variance in uniformity

	Genetic variance Ve	Genetic coefficient	
	exponential model	of variation Ve	
Number born alive	0.16	0.40	
Total number born	0.03	0.17	

Genetic variance in uniformity especially for number born alive

Simulation

Breeding values for level (A_{level}), resistance (A_{res}) and tolerance (A_{tol})

Simulation

- Disease outbreaks: 10% of the time periods
- Endemic diseases: 10% incidence
- 100 sires, 100 half-sib offspring
- 10 observations/animal
- Average reduction in phenotype due to disease: 1 phenotypic standard deviation

Estimation of breeding values and response to selection

- Conventional model (Con)
- Reaction norm model using herd-period average as covariate (RN)
- Uniformity model (DHGLM)
- EBV for level, slope and variance
- Correlations among EBV and with true breeding values
- Selection index to predict response to selection

• H=A_{level}+A_{tol}-A_{res}

Correlations EBV TBV sires

	Endemic disease		Epidemic disease	
	A _{tol}	A _{res}	A _{tol}	A _{res}
EBV mean conventional	0.32	-0.35	0.26	-0.04
EBV slope RN	-0.40	0.40	-0.93	0.15
EBV variance DHGLM	-0.62	0.60	-0.05	0.12

EBV variance better suitable for endemic diseases and EBV slope better suitable for epidemic diseases

Response to selection

- Response in resistance or tolerance depends on type of disease
- RN model very suitable for epidemic diseases
- Uniformity model (=DHGLM) suitable for endemic diseases

Conclusion

We found substantial genetic variance:

- in resilience to disease outbreaks, e.g. due to PRRS
- in uniformity of litter size, especially for number born alive

Reaction norm model is suitable for epidemic diseasesUniformity model is more suitable for endemic diseases

Acknowledgement

WU

- Ewa Sell-Kubiak
- Hamed Rashidi
- Piter Bijma
- Jan ten Napel
- Geert Venner
- Simon Wang

Topigs

- Pramod Mathur
- Egbert Knol
- Egiel Hanenberg
- Juanma Herrero-Medrano
- Rea Alexandri
- Naomi Duijvesteijn
- Marcos Lopes

Course GxE, uniformity and stability

- 19-23 October 2015
 Wageningen, The Netherlands
 Teachers

 Piter Bijma
 Philip Gienapp

 http://www.wageningenur.
 http://www.wageningenur.
 nl/nl/activiteit/Indepth-Course-Genotype-byenvironment-interactionuniformity-andstability.htm
 - Marcos Malosetti
 - Han Mulder

Conclusion

We found substantial genetic variance:

- in resilience to disease outbreaks, e.g. due to PRRS
- in uniformity of litter size, especially for number born alive

Reaction norm model is suitable for epidemic diseasesUniformity model is more suitable for endemic diseases

