

GWAS using a Bayesian approach for litter size and piglet mortality in Danish pigs

Xiangyu Guo, Guosheng Su, Ole F. Christensen, Mogens S. Lund

> Introduction

Materials & Methods

Results & Discussion

> Introduction

Materials & Methods

Results & Discussion

Litter size & mortality

- Litter size & mortality
 - > reproductive traits of major economic importance
- Total number born
 - > litter size at weaning[↑] mortality[↑]
- Litter size at d 5
 - > litter size at weaning mortality

- Identify QTL for the litter size and piglet mortality in Danish Landrace and Yorkshire pigs.
- Propose a novel method based on Bayesian mixture model to detect QTL regions.

> Introduction

Materials & Methods

Results & Discussion

Phenotypes

- TNB: total number of piglets born >
- LS5: litter size at five days after birth >
- Mort: mortality rate before day 5 >

Genotypes

Illumina PorcineSNP60 BeadChip >

Size of data

	Landrace	Yorkshire	
Marker	37,060	36,058	
Animal	5,977	6,000	
Boar	1,788	1,761	
Sow	4,189	4,239	
Birth	1998 to 2014		

Bayesian Mixture Model (BM)

$$\mathbf{y}_{\mathbf{c}} = \mathbf{1}\boldsymbol{\mu} + \sum_{i=1}^{m} \mathbf{x}_{i} g_{i} + \mathbf{Z} \mathbf{u} + \mathbf{e}$$

- > $\mathbf{y_c}$: corrected phenotypic value > $g_i \sim \begin{cases} N(0, \sigma_{g_0}^2) & \text{with probability } \pi_0 \\ N(0, \sigma_{g_1}^2) & \text{with probability } \pi_1 = 1 - \pi_0 \end{cases}$
- > *u*: polygenic effect
- > BayZ Package

QTL region analysis

> Sliding window

> Posterior probability of interval (PP_{int})

the proportion of samples where at least one SNP within the window was falling into the second distribution

Interval posterior probability (*PP_{int}*)

	M1	M2	M3	M4	M5	M6	M7	M8
S1	0	0	0	1	0	0	0	0
S 2	0	1	0	0	0	0	1	0
S 3	0	0	0	1	0	0	0	1
S4	0	0	0	0	0	0	1	0
S 5	0	0	0	0	0	0	0	0
PP _{snp}	0/5	1/5	0/5	2/5	0/5	0/5	2/5	1/5

QTL region analysis

> Introduction

Materials & Methods

Results & Discussion

GWAS for TNB Landrace

Several peaks when using sliding window with 1Mb

The narrowest region among three scenarios was chosen as the QTL region

Overlap with reported region

> 15 QTL regions on SSC1, 2, 3, 6, 7, 9, 13 and 14

	corpus luteum number	
	teat number	
Reproduction	non-functional nipples	
	age at puberty	
	litter weight	
	embryo weight	

Common QTL regions

SSC	Breed 1	Trait 1	QTL 1	Breed 2	Trait 2	QTL 2
3	Landrace	TNB	6.34 ~	Yorkshire	TNB	5.48 ~
			7.34 Mb			6.48 Mb
7	Landrace	LS5	34.74 ~	Landrace	MORT	34.74 ~
			35.74 Mb			35.74 Mb

- 6 common QTL regions on SSC2, 3, 6, 7 and 13 \succ
 - SSC3: both Landrace & Yorkshire >
 - SSC7: positive for LS5 & negative for MORT >

Candidate genes

- KPNA7: suggested the requirement for cleavage development
- SPESP1: involved in the sperm-oocyte binding and fusion in pigs
- GDF9: expression higher in oocytes than in cumulus/granulosa cells

Introduction

- > Materials & Methods
- Results & Discussion

- 15 QTL regions were identified on SSC1, 2, 3, 6, 7, 9,
 13 and 14.
- 6 regions located on SSC2, 3, 6, 7 and 13 were associated with more than one trait.
- The QTL regions detected overlapped with the regions previously reported for reproduction traits.

Thanks for your attention

Take-home messages

- 15 QTL regions were identified on SSC1, 2, 3, 6, 7, 9,
 13 and 14.
- 6 regions located on SSC2, 3, 6, 7 and 13 were associated with more than one trait.
- The QTL regions detected overlapped with the regions previously reported for reproduction traits.