Genomic prediction of crossbred performance based on purebred Landrace and Yorkshire

Hadi Esfandyari P Bijma, M Henryon, O F Christensen, A C Sørensen

Background

- Crossbreeding
- Breeding goal Crossbred Performance

Limited accuracy

- Selection is based on purebred info
- Non-additive effects

 $r_{pc} < 1$

Genomic selection

Training on crossbreds

- SNP effects may differ between PB and CB
- Collection of crossbred P and G

Training on pure lines *r_{pc}* < 1 is partially due to dominance

Compare predictive ability of genomic models

- Additive (MA)
- Additive and dominance (MAD)

Training

- Separate in both pure lines
- Combined pure lines

Landrace

Yorkshire

Full data	489 000	Full data	316 000	
Genotyped	2742 (60K)	Genotyped	2330 (60K)	
Sow	2087	Sow	2150	
Boar	655	Boar	180	

Prediction models

Additive model (MA)

• GEBV Expected genotypic value of the offspring of a boar

- Additive and dominance model (MAD)
 - GEBV
 - **GEBV-C** (SNP allele frequencies from opposite breed)

Prediction accuracy

$cor(GEBV, \overline{P}_{CB})$

Prediction accuracy (Landrace boars)

Prediction accuracy (Yorkshire boars)

Conclusions

Prediction accuracy improved by

- Including dominance
- Joining two lines

GEBV for CP based on dominance and allele frequencies was beneficial

GSE 47:16

ACKNOWLEDGEMENTS

Conclusions

Including dominance in genomic prediction models improved prediction accuracy

 GEBV-C based on dominance and allele frequencies was beneficial

Joining two lines

improved prediction accuracy

Danish data

Prediction models

- Additive model (MA)
 - GEBV

$$\sum_{j=1}^{s} \mathbf{A} \mathbf{A} \quad (p_{jr} \hat{a}_j)] + \mathbf{A} \mathbf{a} \quad (0.5 p_{jr} \hat{a}_j - 0.5 q_{jr} \hat{a}_j)] + |\mathbf{a} \mathbf{a} - q_{jr} \hat{a}_j)]$$

- Additive and dominance model (MAD)
 - GEBV
 - **GEBV-C** (SNP allele frequencies calculated from the all genotyped sows in opposite breed)
- Prediction accuracy GEBV of the boars and mean phenotype of offspring of the boars

$$cor(GEBV, \overline{P}_{CB})/mean(\sqrt{\frac{n}{n+k}})$$

Selection criteria

GEBV-P: Genomic Estimated Breeding value for Purebred Performance **GEBV-C:** Genomic Estimated Breeding value for Crossbred Performance

Prediction Accuracy

Separate	MA	MAD	
	GEBV	GEBV	GEBV-C
Landrace	0.114	0.125	0.134
Yorkshire	0.321	0.337	0.36

Combined	MA	MAD	
	GEBV	GEBV	GEBV-C
Landrace	0.15	0.16	0.19
Yorkshire	0.36	0.34	0.40

Cumulative response to selection in crossbreds

HETEROSIS

The impact of time since divergence of breeds

		Time since divergence					
	1	50	100	200	400		
Sc. 5	1.21	1.32	1.33	1.20	0.94		
Sc. 6	1.15	1.28	1.30	1.19	0.99		

Impact of varying size of the training population

Prediction models

Additive model (MA)

• **GEBV** Expected genotypic value of the offspring of a boar $\sum_{j=1}^{s} AA \quad (p_{jr}\hat{a}_j)] + Aa \quad (0.5p_{jr}\hat{a}_j - 0.5q_{jr}\hat{a}_j)] + aa \quad -q_{jr}\hat{a}_j)]$

- Additive and dominance model (MAD)
 - GEBV
 - GEBV-C (SNP allele frequencies from opposite breed)
- Prediction accuracy

$cor(GEBV, \overline{P}_{CB})$

• Training on CB Higher response to selection than training on pure lines

- Taking into account the breed origin of allele would
 - increase response to selection **EXCEPT**:
 - Breeds are closely related
 - The reference population is small

Landrace

Yorkshire

