

Genome-wide association studies in purebred and crossbred entire male pigs

SCIENCE & IMPACT

Hélène GILBERT

helene.gilbert@toulouse.inra.fr

Labrune Y, Chassier M, Muller N, Parois S, Mercat MJ, Prunier A, Larzul C, Riquet J

Genome wide association studies in purebreds and crossbreds Are they common regions? What could explain the differences?

Population structure and genotyping

Traits

- Production: feed intake and growth (DFI, FCR , RFI, ADG), BW
- Carcass composition: Carcass yield, lean meat content, tomograph, ...
- Meat quality: a*, b*, L*, drip loss, ultimate pH
- Lesions: at mixing, before slaughter, on the carcass
- Boar taint/sex hormones: androstenone, skatole, indole, testosterone, oestradiol
- Health parameters: leucocytes, CRP, Pig-MAP,...
- Lameness

Genome wide analyses

Linear mixed model

Applied to purebreds and crossbreds separately

GWAS (3) common regions, trait families

For all SNP with -log10(p.value)>4

In the 1 Mb-region surrounding the marker, look for -log10(p.value)>3 in the trait family

GWAS (3) common regions, trait families

For all SNP with -log10(p.value)>4

In the 1 Mb-region surrounding the marker, look for -log10(p.value)>3 in the trait family

1Mb regions – purebred results, 325 significant regions

1Mb regions – crosssbred results, 321 significant regions

GWAS - summary

1. Similar number of regions detected in purebreds and crossbreds

2. Only few common regions in the two populations

a. Different allelic frequencies between breeds
b. Different linkage disequilibrium (opposite marker/QTL phases)
c. Different genomic background effect
d. Limited power

Breed origin of the alleles \implies Are allelic effects different depending on the breed on crossbred animals ?

Breed origin of the alleles Are allelic effects different depending on the breed Large White On crossbred animals ?

No effect

Breed origin of the alleles Are allelic effects different depending on the breed Large White On crossbred animals ?

Allelic breed effects, 1Mb regions

Allelic breed effects, 1Mb regions

Allelic breed effects, 1Mb regions

Conclusions

Not many regions detected in common between purebreds and crossbreds: about 40% of the traits had genetic correlations between purebreds and crossbreds different from 1

Quite a lot of breed specific effects:

~1/3 might be due to different allelic frequencies between breeds
What about the 2/3 left?

Show unequal distribution across trait families

> Could relate to genetic correlations magnitudes between purebreds and crossbreds

Acknowledgements

From the test farm for records and samplings: A. Berre, L. Dantec, M.-H. Lohat, G. Martin, L. Udin

From Ifip for contributing to the design monitoring:

C. Hassenfratz, A. Varenne

From the PEGASE research unit for laboratory analyses: R. Comte, S. Jaguelin, M. Lefebvre, F. Thomas

From the GenPhySE research unit for DNA preparation: K. Feve

This work is part of the national program UtOpIGe, carried out by INRA, IFIP, SYSAAF, Novogen, and Bioporc pig breeding companies (ADN, Choice Genetics France, Gène+, Nucleus)

Financial support was from ANR (ANR-10-GENOM_BTV-015 UtOpIGe), FranceAgrimer, Bioporc, InaPorc, and INRA (Integrated Management of Animal Health metaprogramme for the "GISA-HealthyGrowth" project)

M. Chassier is funded by the EU FP6 Integrated Project SABRE

