

Genetic modeling of feed intake: a case study in growing pigs

Ingrid David, Julien Ruesche, Laurence Drouilhet, Hervé Garreau, Hélène Gilbert

Ingrid.david@toulouse.inra.fr

Why new modeling of feed intake is needed?

INRA

Weekly averages of daily feed intake

17 weeks of observation (67 to 180 d. of age)

3096 Large White pigs (9 generations)

- Selected the best model within approach *CP, RR-OP, RR-SPL, SAD*
- 2) Compared the 4 best models+ simple repeatability

Which model is the best to

- Estimate genetic parameters
- Estimate correlation structures
- Predict future performances

CP:character process, RR: random regression, SPL: spline, SAD: structured antedependence

Higher but similar pattern of heritabilities / RR, spline models

SAD

CP:character process, RR: random regression, SPL: spline, SAD: structured antedependence week

CP:character process, RR: random regression, SPL: spline, SAD: structured antedependence week

Approaches comparison: genetic correlation matrices

SAD-CP, consistent results

RR models, abnormal negative correlations

CP:character process, RR: random regression, SPL: spline, SAD: structured antedependence

Approaches comparison: phenotypic correlation matrices

SAD-CP, consistent results

RR models, abnormal negative correlations

CP:character process, RR: random regression, SPL: spline, SAD: structured antedependence

Approaches comparison: predictive ability

Approaches comparison: predictive ability

SAD: best predictive ability

week CP:character process, RR: random regression, SPL: spline, SAD: structured antedependence

Variances / heritability

- SAD, RR-OP, RR-SPL \approx similar heritabilities
- CP very different / other approaches

Correlations

- CP and SAD similar and consistent estimations
- Bias in RR, SPL models •

Predictive ability SAD > other approaches

SAD is the most promising approach

□ Similar results obtained for feed intake in rabbits and duck

Best model selection

Approach	Genetic effect	Permanent env. effect	ΔΒΙϹ
Simple repeatability			18094
Best CP	AR1H	AR1H	0
Best RR-OP	OP2	OP2	8459
Best RR-SPL	Cubic sp	6303	
Best SAD	SAD1-22	SAD1-21	22

CP:character process, RR-OP: random regression, RR-SPL: spline, SAD: structured antedependence

$$y(t) = \mu(t) + u(t) + p(t)$$
$$p \sim N(0, IP)$$

$$\boldsymbol{p}(t_0) = \boldsymbol{e}(t_0)$$

• • •

$$\boldsymbol{p}(t_j) = \sum_{k=1}^{s} \boldsymbol{\theta}_{kj} \boldsymbol{p}(t_{j-k}) + \boldsymbol{e}(t_j)$$

$$\boldsymbol{e}(t_j) \sim N(0, \sigma_{ej}^2), \sigma_{ej}^2 = \exp\left(\sum_{q=0}^{\gamma} b_q t_j^q\right)$$
$$\boldsymbol{\theta}_{kj} = f_k\left(t_j\right) = \sum_{q=0}^{\beta_k} a_{kq} t_j^q$$

Correlations between EBV

	Best RR-SPL	Best RR-OP	Best SAD	Best CP	SR
Best RR-SPL		0.91	0.90	0.90	0.66
Best RR-OP	0.73-0.98		0.92	0.89	0.72
Best SAD	0.81-0.96	0.76-0.97		0.95	0.73
Best CP	0.60-0.96	0.79-0.96	0.72-0.99		0.73
SR	0.35-0.81	0.46-0.96	0.51-0.88	0.65-0.82	

INRA