

Literature review on NH₃ and GHG emitted by pig production Part 2: storage, treatment and spreading

ESPAGNOL S. (1) GUINGAND N. (1), HASSOUNA M. (2)

66th Annual Meeting of the EEAP Warsaw (Poland) – August 31-September 4, 2015 Session 47: Livestock farming systems free communications

Part 2 – storage, treatment and spreading

2

Building

Building of the database

Reminder:

- The database includes data on gaseous emissions
- A data concerns gaseous emissions of NH3 or GHG (CH4, N2O) and CO2

Informations collected in the database

- Information on the gaseous emissions
 - EF with the unit of the article
 - EF with standard unit
 - Emissions in % of the N or C input

Metadata :

- Nb for storage : 72
- Nb for treatment : 62
- Nb for spreading : 73

Building informations:

Type of manure Physiological stage Feeding strategies Type of building

Slurry mass balance:

N default C default K2O default P2O5 default

Geography:

Period of storage Localisation Time of storage Outside temperature Rain

Type of storage:

Quantity of manure stored Amount of N stored Surface of storage Type of inputs Frequency of inputs Cover (Y/N) Type of cover Brewing

Manure composition :

DM SV SS COD C/N N tot TAN C tot C org

P205

K20

pН

Exemple of the storage

Gaseous measurements and analysis

Type of measurements
Time of measurements
Frequency of measurements
Methodology of sampling
Methodology of analysis
Type of concentration measured
Type of concentration calculation

Flow rate:

Type of flow Methodology of measurement Value of the flow Air speed on the slurry surface in the dynamic tunnel

Emissions:

Temperature of the manure

Type of emissions calculated Methodology Extrapolation

Emissions for storage (1)

SLURRY & SOLID MANURE

- Unit selected to express results : $/m^3/d$ or /t/d = the main unit of the publications except for the emissions of NH₃ for the slurry (in m^2/d)
- N emissions of the solid manure higher than for the slurry.
 - Partly due to the duration of the emissions (less than one month for the solid manure and for several months for the slurry).
 - Still the emissions expressed in % of N input are higher for solid manure (17% of the N input) than for slurry (6%)
- CO2 emissions of the solid manure also due to the degradation of straw.

Nb data

Emissions for storage (2)

SLURRY/NH3

g N- $NH_3/m^2/d$

- The results confirm the incidence of main factors on ammonia emissions
 - presence of cover
 - temperature
 - air speed on the slurry surface
 - Main technique used to measure N emissions for slurry = a dynamic tunnel. Very few publications with the information on air speed and it is shown to be very important.
- Importance of the metadata (average composition of the slurry higher for some modalities because of fattening pig slurry)

Emissions for Treatment (1)

- Three main treatments in publications
 - Slurry
 - Biological treatment
 - Composting with straw
 - Solid manure
 - Composting

- Solid manure composting
- Slurry additives
- Anaerobic digestion

- Solid manure additives
- Biological treatment
- Slurry composting with straw
- 93 data concerning biological treatment but :
 - A lot of phases (phase separation, reactor, decantation, storage of solid phase of separation, storage of sludge, storage of supernatant)
 - All data come from a unique scientific team
- The data for treatment concern very different processes : few data per process

Emissions for Treatment (2)

Emissions for spreading (1)

Mainly data on slurry application (235 data selected vs 14 data for solid manure)

Emissions for spreading (2)

N emissions in g N/ha/d

- Mainly N emissions on NH3
- Emissions higher for slurry than for solid manure but with a very important variability

C emissions in g C/ha/d

- No CH4 emissions during spreading.
- No data on CO2 emissions of solid manure during spreading

Emissions for spreading (3)

- Results confirm the incidence of the type of spreading on NH3 emissions
- Again : importance of metadata on the application rate and the nitrogen input per ha

Conclusions – Part 2

- N: main losses on NH3
 - during storage of solid manure (18%)
 - During spreading of slurry (16%) and solid manure (14%)
 - During treatment by composting slurry with straw (30%)
- Important lack of data
 - Less than 10 data for
 - storage of solid manure
 - spreading of solid manure
 - For all process of treatments
 - Composition of slurry, measurement duration, air speed for storage

66th EAAP, Warsaw (Poland) 03/09/2015

Global conclusions

- Several steps : building, storage, spreading and treatment
- A big lack of informations
- Most of the times on very influent parameters (nutritional strategy, manure management....)
- Great technical diversity in pig farms = increasing the number of EF to define pig farms in inventories
- Data base = useful tool to identify « black boxes » and to achieve new studies…

66th EAAP, Warsaw (Poland) 03/09/2015 13

Perspective

- Updating our tool
- Merging with others database developped by partners
- Pigs but also poultry and cattle production
- Not only NH₃ and GHG but also on particles and odors
- Future tool in english
- One name to remember : ELFE
- https://www6.inra.fr/animal_emissions/ELFE

Thank you for your attention institut du porc

www.ifip.asso.fr