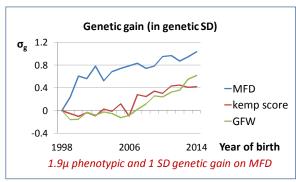
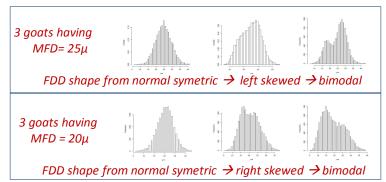


Is variability in fibre diameter distribution related to genetic gain on fineness in French Angora goats?

D. Allain¹ and P. Martin²


¹INRA, UMR1388 GenPhySE, CS52627, 31326 Castanet Tolosan Cedex, France ²CapgËnes, Agropole, 2135 Route de Chauvigny, 86550 Mignaloux Beauvoir, France daniel.allain@toulouse.inra.fr


Context

National selection scheme of Angora goat in France

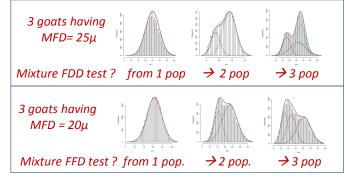
An open nucleus (about 5 000 animals), a performance recording system with the following selection criteria: fleece weight (GFW) measured at 6 month interval at farm, kemp score assessed by expert and mean fibre diameter (MFD) with fibre diameter distribution (FDD) widely measured (from mid-side fleece samples) by OFDA methodology from 1999 (about 350 animals of 15-18 months of age / year).

High genetic gain on mean fibre diameter but with high variability on fibre diameter distribution

Material and methods

- 1-5 429 fleece samples from 5 020 animals measured for MFD and FDD with OFDA methodology (OFDA2000) from 1999
- 2- Analysis of MFD and FDD parameters: CV, skewness and kurtosis (removed fibres > MFD+ 3SD) within fleece sample
- 3- Test for the presence of a mixture of normal distributions with unequal variance (R-Package Mclust) to estimate distribution parameters (number, proportion, mean and variance of each population) within the mixture distribution.
- 4- Genetic parameter estimates (VCE software): 5 020 animals with performances (n=5429); 6 646 animals in pedigree file

Results


Genetic parameters* and phenotypic correlations* of MDF and FDD parameters

	MFD	CV	Skew.	Kurt.	Nb. Pop.
MFD	0.47	-0.23	-0.40	0.36	-0.14
CV	-0.14	0.44	0.54	-0.90	0.27
Skewness.	-0.31	0.48	0.36	-0.48	-0.16
Kurtosis	0.25	-0.73	-0.33	0.37	-0.11
nbpop	-0.02	0.15	-0.08	-0.01	0.05
* Heritability on diagonal; genetic and phenotypic correlations above and below diagonal respectively					

High heritability estimates for MFD, CV, skewness and kurtosis MFD is negatively correlated to CV, skewness and kurtosis,

Selection to reduce MFD tends to increased skewness through positive skewed FFD

Good fitting FDD density and mixture populations

85 % of FDD showed a mixture of fibre subpopulations: 68 % and 17% FDD showed 2 and 3 subpopulations respectively

Conclusions

Preliminary results show that

- Genetic gain on MFD or selection to reduce MFD could negatively modify FDD parameters: by increasing FDD skewness and mixture of normal populations within a fleece and thus by increasing default spinning in mohair processing due to higher FDD heterogeneity.
- ➤ Both MFD and FDD parameters (CV, skewness, kurtosis) have to be taken into account in selection programmes in order to reduce both MFD and FDD heterogeneity.

