Stiftung Tierärztliche Hochschule Hannover University of Veterinary Medicine Hannover, Foundation

STIFTUNG. AMONNAH 17 CHE HOCHSCHUL

FRIEDRICH-LOEFFLER-INSTITUT

Bundesforschungsinstitut für Tiergesundheit

Effects of dietary niacin supplementation on hepatic expression of FoxO1 and genes involved in glucose production in dairy cows during the transition period

A. Kinoshita¹, L. Locher², R. Tienken³, U. Meyer³, S. Dänicke³, J. Rehage⁴, K. Huber⁵

¹ Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany

- ² Clinic for Ruminants with Ambulatory and Herd Health Services at the Center of Veterinary Clinical Medicine, Ludwig-Maximilians-University Munich, Germany
- ³ Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Braunschweig, Germany
- ⁴Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- ⁵ Institute of Animal Science, University of Hohenheim, Stuttgart, Germany

Background

Forkhead box protein O1 (FoxO1)

Transcriptional factor for G6P, PCK1 (Barthel et al., 2005) Inactivated by phosphorylation as a target of insulin signaling (Barthel et al., 2005)

Background

Background

Forkhead box protein O1 (FoxO1)

Transcriptional factor for G6P, PCK1(Barthel et al., 2005) Inactivated by phosphorylation as a target of insulin signaling (Barthel et al., 2005)

Nicotinic acid (NA)

Substrate for NAD, NADH (Niehoff et al., 2009) Lipid-lowering effect (Pires et al., 2009, Titgemeyer et al., 2011, Kenez et al., 2014)

Affects translational and transcriptional regulation (Khan et al., 2013, 2013)

Reduced phosphorylation of FoxO1 in rats (Choi et al, 2011)

Hypothesis & aims

Hypothesis:

NA supplements and **onset of lactation** affect **FoxO1-mediated regulation** of hepatic glucose production and the **expression of downstream genes** in dairy cows in transition period

Aimes:

To investigate the effects of dietary NA supplements and **onset of lactation** on expression and extent of phosphorylation of **FoxO1** as well as mRNA expression of **genes involved in glucose metabolism** in dairy cows in transition period fed with diet with high or low concentrate portions

Study design

21 pluriparous German Holstein cows

Nicotinic acid (NA) supplementation (d-42 – d+21)	
NA (24g/day; N=11)	Control (0g/day; N = 10)

Study design

- : HC-CON, HC-NA : LC-CON, LC-NA

Study design

21 pluriparous German Holstein cows

	Nicotinic acid (NA) supplementation (d-42 – d+21)	
	NA (24g/day)	Control (0g/day)
Prepartum: LOW concentrate proportion (30% in DM basis)	LC-NA (n=5)	LC-CON (n=5)
Prepartum: HIGH concentrate proportion (60% in DM basis)	HC-NA (n=6)	HC-LOW (n=5)

Analysis of liver biopsy samples

Protein expression (Western Blot)

tFoxO1: Total protein of FoxO1 pFoxO1: Extent of phosphorylation of FoxO1 at serine 256

mRNA expression (real time-qPCR)

FoxO1 Insulin Receptors (IRA, IRB) GLUT2 G6P, PCK1, PC, PCCA

Data evaluation

SAS mixed model for repeated measures for effects of NA, time, and concentrate

FoxO1 Protein and mRNA expression

Extent of phosphorylation of FoxO1 at ser256

mRNA expression of gluconeogenic enzymes

mRNA expression

Stiftung Tierärztliche Hochschule Hannover

Summary

glucose output

- NA supplements appeared to induce a reduced insulin sensitivity and increased hepatic gluconeogenesis in dairy cows in transition period
- Prepartal concentrate portion in the diet had only a marginal effect on the NA action on gene expression
- Regulation of hepatic gluconeogenesis by FoxO1 appeared to be less important at the levels of transcription, translation and phosphorylation

Thank you for your attention

This study was supported by Deutsche Forschungsgemeinschaft