The effect of seasonal daily live weight gain in females calves on reproductive performance

Graciela Quintans, Joaquín Echeverría, Georgget Banchero and Fernando Baldi

Instituto Nacional de Investigación Agropecuaria Uruguay

Uruguay: some general figures

• Stock: 11 million of cattle (4.2 million of cows)

• Cattle with whole tracking (allows to identify the origin of the product at any time during the process)

Uruguay: some general figures

- No hormones used (by law since 1978)
- Without animal protein in feed (by Law since 1996).

- Country free of BSE, Scrapie and Maedi-Visna.
- Uruguay is the 7th (beef) and 3^{erd} (sheep meat) exporter

Uruguay: some general figures

- Beef represents 30% of the total exportations of the country.
- 80% of the beef produced is exported.
 - Livestock production takes 87% of the total area of Uruguay
- Beef consumption: 61 kg beef meet/hab/year

Unsubsidized production systems

Main resource of food for cows and calves : NATIVE PASTURES

Characteristics of native pastures in Uruguay

- Crude Protein: 7-11%
- Energy: 1.8 2.0 Mcal/kg DM (7.5 8.4 MJ/kg DM)
- Digestibility of DM: 40-50 %

Open sky: weather dependent

Daily growing rate of native pastures

Ayala y Bermudez, 2005

Some strategies developed to manage cows/calves on these pastoral conditions

- Adequate stocking density or management to avoid overgrazing (sward structure, height and species)
- Improved pastures
- Strategic supplementation

Management

Some strategies developed to manage cows/calves on these pastoral conditions

- Adequate stocking density or management to avoid overgrazing (sward structure, height and species)
- Improved pastures
- Strategic supplementation

Strategic supplementation

• First winter of the female calf (after weaning)

90 days of a concentrate to avoid live weight looses

Because it has been seen in different field experiments that affects future reproductive perfomance.....

Objetive: evaluate contrastanting daily live weight gain during winter (post-weaning) on reproductive perfomance in female calves (at 20 m old, autumn mating)

Material and methods:

49 females calves (8m, 196 kg):
CON: grazing native pastures (n=25)
SUP: grazing native pastures and supplemented during 90 days of winter (n=26)

Supplementation= 1.5% of LW (131g CP and 2.1MCal of ME per kg DM)

ALL ANIMALS GRAZED TOGETHER DURING THE WHOLE EXPERIMENTAL PERIOD (ONE YEAR)

Individual intake

Pastures and Concentrate

Native pasture: low protein (CP=8-9%), low digestibility (30-45%)

• Concentrate (1.5% LW, 3 kg/a/d) 16% of CP

Results

- Live weight
- Daily live weight gain rate
- Pregnancy rate
- IGF-1 concentrations
- Discriminative analysis

Live weight

Treatment * day P<0.0001

Daily live weight gain rate (kg/a/d)

	CON	SUP	Р	
Winter	0.074	0.757	< 0.0001	
Spring	0.758	0.601	<0.0001	
Summer	0.331	0.247	0.0064	
Autumn	0.217	0.216	0.9896	

Pregnancy rate

SUP: 88 % CON: 36%

P<0.01

IGF-1 concentrations

Treatment * day P<0.0001

Results of <u>discriminate</u> analyses for DLWG between pregnant and non pregnant heifers

Daily live weight gain (Kg/day)

	Wils' Lambda	Partial Lambda	F-remove	p-value	Tolerance
DLWG winter	0,965999	0,598305	29,54105	0,000002	0,479569
DLWG spring	0,651389	0,887277	5,58993	0,022542	0,559216
DLWG summer	0,633484	0,912355	4,22685	0,045752	0,799392
DLWG autumn	0,611874	0,944578	2,58167	0,115262	0,928469

Possible mechanisms?

• Metabolic memory ?

NUTRITION X REPRODUCTION

Conceptual APPROACH

(Blache et al., 2006)

Possible mechanisms?

• Metabolic memory ?

Although heifers made compensatory live weight gain, is an inadequate environment in part of the development process (post-natal) able to modify the potential expression of reproductive performance?

Considerations

- Winter supplementation affects future reproductive performance
- In range conditions winter supplementation after weaning it is a technology adopted by farmers
- More research to understand the mechanisms underlying this process

Interaction between researchers, extensionists and farmers = sharing the knowledge

Thanks to the people of our team

Thanks!

Gracias!

