

Monitoring endemic diseases in pig herds

Prof. Dominiek Maes

Unit Porcine Health Management Faculty of Veterinary Medicine Ghent University

EAAP Warsaw, 4 September 2015

Outline presentation

- Introduction
- Respiratory disease
- Enteric diseases
- Other diseases
- Discussion and conclusions

Animal health

- Different from realizing genetic potential of animals
- We do not measure health, but:
 - (absence of) disease
 - level of management and biosecurity
- Different levels: animal, group, herd, region, country, ...
- Distinction: « infection » ← « disease »

Why so many infectious diseases? → numerous transmission routes!!

- Direct pig contact, incl. sow-piglet
- Indirect: personnel and visitors, contaminated objects, rodents, insects, feral pigs, ..
- Other: feed, water, via needles, etc.
- Semen (AI)
- Airborne!

Transmission routes infectious diseases

Pig-to-pig transmission

- Most important for most diseases
- Within and between herds
- Subclinical infections, carrier animals, long viremia

N : number of pigs \rightarrow risk increase on transmission of pathogens = N² – N 15 pigs \rightarrow 210; 50 pigs \rightarrow 2450

Transmission routes infectious diseases

Pig-to-pig transmission

- from sow to piglet ("vertical transmission")
- "Early" vs. "late" colonizing pathogens

Transmission routes infectious diseases

• Contaminated people:

Examples: CSF, FMD, *E. coli*, TGE, PRRSV Mainly by persons having direct contact with pigs

• Rodents:

Examples: swine dysentery, leptospirosis,

Salmonella

Transmission pig diseases by insects

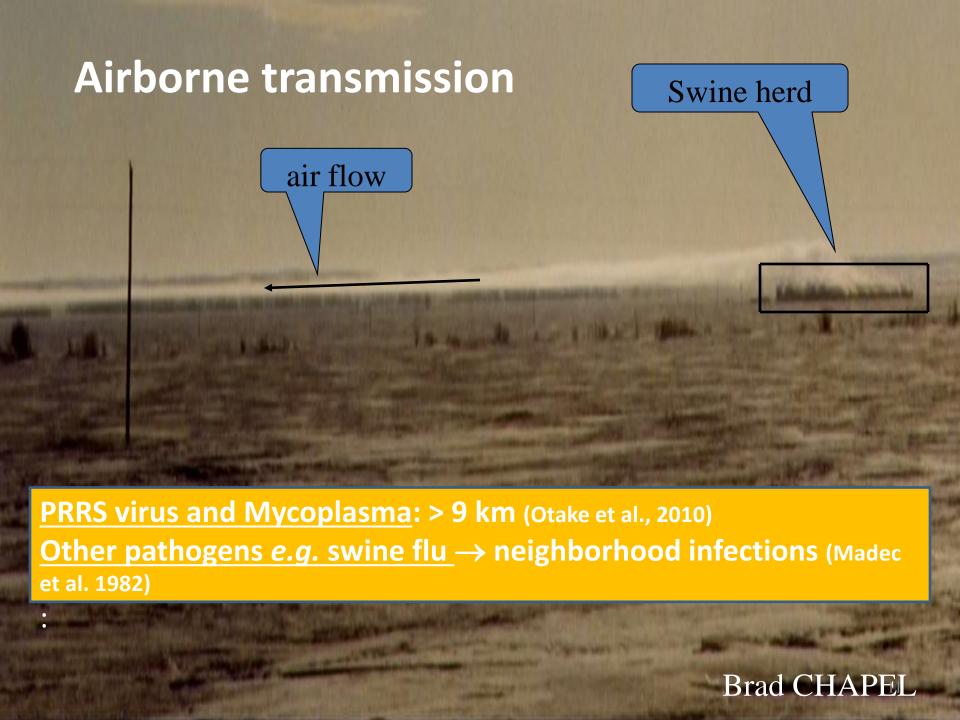
Examples

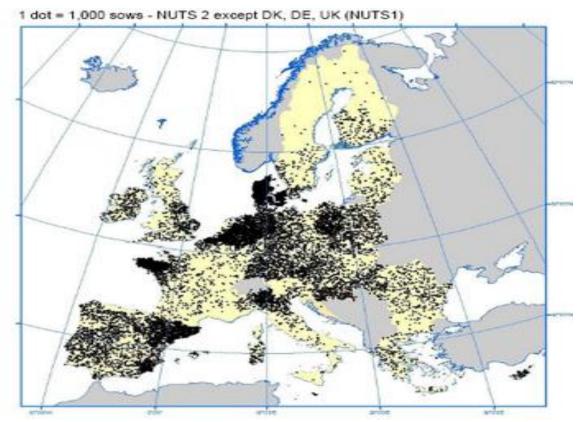
African swine fever, Classical swine fever, Mycoplasma suis, PRRSV, Aujeszky's disease virus, Salmonella, Streptococcus suis, Swine pox, Vesicular stomatitis

- Biological or mechanical vectors
- Musca domestica → 1.5 km
- Mostly based on experimenal data

Transmission pig diseases

- Birds
- latrogenic transmission → injections
- Vehicles → CSF, PRRSV
- Feed, water
- Other: e.g. feral pigs




Important <u>viruses</u> in pig semen

(Maes et al., Theriogenology, 2008)

Organism	Timing of detection (test used)
Classical swine fever virus	7-63 DPI (RT-PCR); 11-53 DPI (virus isolation)
FMD virus	Up to 9 days post exposure (virus isolation)
Japanese encephalitis virus	35 DPI
Porcine circovirus	Intermittently between 5-47 days DPI (nPCR)
Porcine enterovirus	45 DPI (virus isolation)
Porcine parvovirus	Detected (virus isolation)
PRRS virus	Up to 92 DPI (nested RT-PCR)
	Up to 43 DPI (swine bioassay)
Pseudorabies virus	10 DPI (virus isolation)
Rubula virus	2 to 49 DPI (virus isolation)
Swine vesicular disease	Up to 4 DPI (virus isolation)
virus	10

Pig production in the EU

High density populated areas (e.g. >3000 pigs / km2)

Outline presentation

- Introduction
- Respiratory disease
- Enteric diseases
- Other diseases
- Discussion and conclusions

Respiratory pathogens in pigs

	PRIMARY	SECONDARY
Viruses	Influenzavirus (H1N1, H3N2, H1N2) PRRSV, PRCV, PCV2,	
Bacteria	M. hyopneumoniae A. pleuropneumoniae H. parasuis B. bronchiseptica	A. pleuropneumoniae H. parasuis P. multocida B. bronchiseptica M. hyorhinis, S. suis T. pyogenes,
Parasites	A. suum	

Can damage lung tissue by themselves	Previous damage of lung
	tissue needed

 Importance of each pathogen very variable ~ continent, country, herd, time within herd, health status (conventional vs. high health)

% of slaughter pigs with <u>lung lesions</u>

(Meyns et al 2011; Fraile et al 2010; Merialdi et al. 2012)

Parameter	Belgium	Spain	Italy	Major pathogens
% pleuritis	21	14	26	A. pleuropneumoniae, H. parasuis, P. multocida, M. hyorhinis, S. suis,
% pneumonia	25	56	46	M. hyopneumoniae, viral pathogens,

→ similar prevalences as 20-30 years ago!

- 1978:	Backström and Bremer	27%
- 1990:	Christensen and Culinane	45%
- 1991:	Charrier	30%
- 1993:	Paisley et al	63%

% of herds with <u>seropositive</u> slaughter pigs

(European study, 2008; Meyns et al., Vet J 2011)

Parameter	Belgium (50 herds)	Spain (107 herds)	Italy (46 herds)
A. pleuropneumoniae	96	89	100
M. hyopneumoniae	98	82	91*
PRRSV	94	89	100*
Influenza (H1N1)	100	90	78
Influenza (H3N2)	98	100	63
Influenza (H1N2)	98	97	14

^{*} Blood sampling at 80 kg

Monitoring respiratory pathogens

- Historic information
- Clinical symptoms, ev. coughing index (Nathues et al. 2012)
- Routine necropsies affected pigs → further diagnostic work-up
- Slaughter checks:

Advantages: cheap, easy, lesions are economically important

<u>Limitations</u>: no etiologic diagnosis (!), regression of lesions, subjective, min. 30 animals, different scoring methods, severe pleurisy may mask other lesions, fast speed of slaughter line, ...

Monitoring respiratory pathogens

- Serial or cross-sectional sampling at herd Samples:
 - blood, oral fluids, ... → antibodies
 - blood, oral fluids, BAL fluid, tracheal, tonsil / nasal swabs, ... → <u>pathogen</u>
 or parts of pathogen
- Blood sampling at slaughter

- Herd veterinarian should integrate information from herd, laboratory, necropsy, etc.
- <u>Challenge</u> is mostly not "is pathogen present on herd" but mostly "<u>which pathogens</u> are important in specific age group"

Paired or serial sampling

= same animals sampled over time

Advantage:

provides the most informative results

Disadvantages:

- requires time before results are known
- different herd visits necessary
- needs individual identification of animals

Cross-sectional sampling

= sampling different age groups at same day e.g. nursery, growing and fattening pigs

Advantage:

- results quickly known (one herd visit)
- no individual identification of animals

Disadvantage:

- results more difficult to interpret
- → Possible to combine serial and cross-sectional sampling

Serology

- Different tests:
 - mostly ELISA
 - other (HI-test swine flu, virus neutralization, etc.)
- Sensitivity and specificity may vary
- Antibodies may develop fast or slow after infection, or may not be detectable
- Correlation (e.g. HI-antibodies swine flu) or no correlation (e.g. Mycoplasma) with degree of protection

Serology

- Interpretation difficult in:
 - vaccinated populations
 - nursery pigs because of maternal antibodies
- Retrospective data
- Interpretation at group level

Oral fluids

- Quick, easy, and inexpensive to collect
- Prospective → to forecast health and productivity
- Mixture of saliva and "oral mucosal transudate"
- e.g. PRRSV, PCV2, SIV and M. hyopneumoniae
 Antibodies against these pathogens → test validation needed
- No individual samples → no prevalence data

Samples of respiratory tract

- Nose → tonsil → trachea → BAL fluid
- **Depends on pathogen** *e.g.* BAL fluid and trachea more sensitive for M. hyo; nasal swabs ok for swine influenza in acute outbreaks
- Upper respiratory tract (nose) easier for routine sampling
- Detection of bacterial pathogens ~ antimicrobial medication

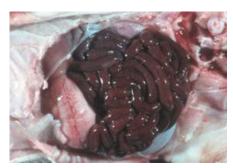
For optimal laboratory testing, veterinarians should...

- Define goal of submission
- Select appropriate <u>sample(s)</u>
- Use correct method of <u>submission</u>
- Select animals with typical disease
- Submit adequate <u>number</u> of samples
- Include samples from control animals
- Consider strengths and weaknesses of lab <u>tests</u>
- Interpret in relation with <u>farm data</u>*

^{*} Herd veterinarian should integrate information from herd, laboratory & necropsy

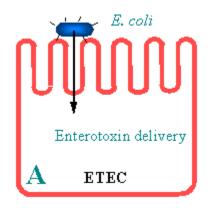
Outline presentation

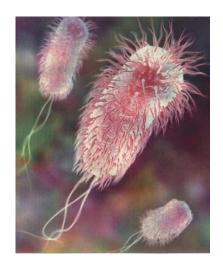
- Introduction
- Respiratory disease
- Enteric diseases
- Other diseases
- Discussion and conclusions


Clostridium perfringens

(Songer 2012)

Type A	Type C
 Neonatal necrotizing enteritis, gas gangrene Usually from <u>1w after birth until</u> weaning; <u>low mortality</u> 	 Neonatal hemorrhagic and necrotic enteritis Mostly in 3-day-old piglets; rare >1w directly after birth: severe bloody diarrhea + high mortality later: lower morbidity and mortality
• α-toxin	• α- and β-toxin
 Normal inhabitant of intestinal tract → quantification (pure cultures of >10⁶/g feces) 	 Primary pathogen, can also colonize lesions of other diseases




Other Clostridia in pigs: *C. difficile, C. novyi*

Neonatal *E. coli* enterotoxicosis

- Enterotoxigenic E. coli (ETEC) important cause of diarrhea
- Adhesion factors (mainly <u>F4</u>*, F5, F6, F41)
- Enterotoxins (LT, Sta, Stb)
- Intestinal epithelium intact

^{*} F4+ ETEC highly prevalent in pig breeding farms – 65% of young sows seropositive (Van den Broeck et al., 1999)

Post-weaning diarrhea/edema disease

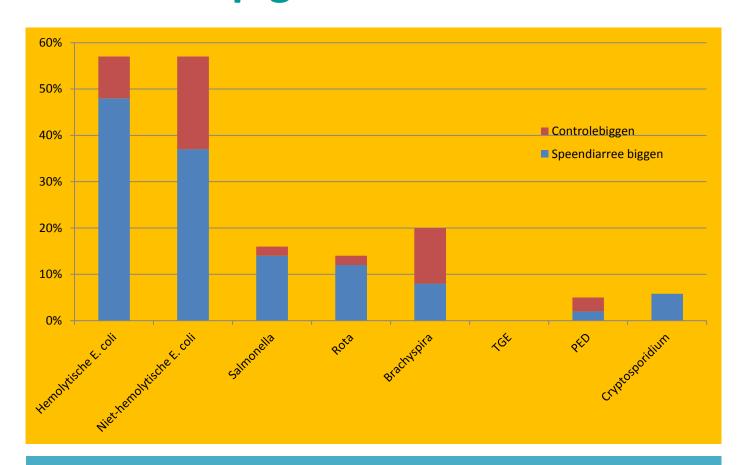
 Both caused by E. coli that colonize the small intestine and produce exotoxins

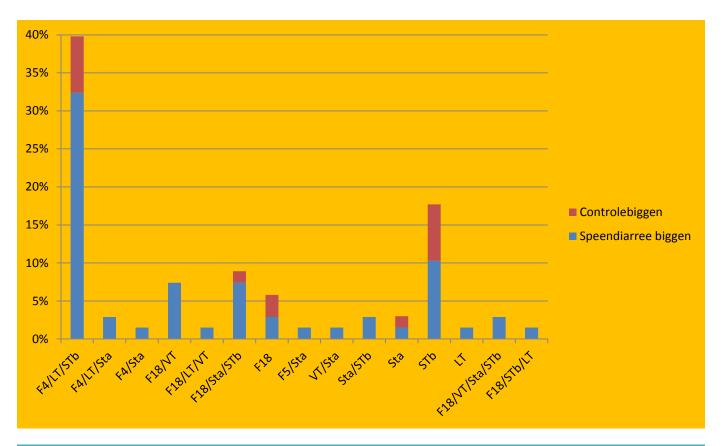
• **Diarrhea:** mostly F4+ and F18+ ETEC

Enterotoxins

Edema disease: mainly F18ab+ EDEC

Shiga-toxin


From 2d after weaning onwards



Prevalence of pathogens in recently weaned pigs (Animal Health Service, Flandres, 2012)

100 recently weaned pigs at necropsy during one year Control pigs n=25; pigs with weaning diarrhea n=75 57% hemolytic *E. coli*

Virotypes of *E. coli* with virulence factors in weaned pigs (Animal Health Service, Flandres, 2012)

- 114 isolated *E. coli* strains
- Approx. 60% of *E. coli* strains contained virulence factors
- Most common virotype: F4/LT/STb

Prevalence rotavirus A infections in pigs with and without diarrhea (Theuns et al. 2015)

Country	Year	Diagnostic test	Age (days)	Symptoms	n=	% RVA positive	Reference
USA, Canada, Mexico	2009-2011	RT-qPCR	1-3	D	954	30%	[62]
			4-21	D	2144	46%	
			22-55	D	2538	84%	
			>55	D	1207	61%	
Argentina	1999	PAGE + antigen EIA	<45	ND	901	3.3%	[63]
Canada	2005-2007	RT-PCR	Slaughter	ND	96	8.3%	[64]
			>24	ND	50*	16.0%	
Denmark	2006-2007	EIA	1-28	D	308	10%	[65]
Germany	nd	EM	1-21	D	102	2.0%	[66]
Italy	2004-2006	RT-PCR	28-84	D	102	71.5	[67]
Ireland	2005-2007	RT-PCR	28-63	ND	292	6.5%	[68]
Slovenia	2004-2005	RT-PCR	1-21	D	6	50%	[69]
				ND	121	11.6%	
			22-70	D	14	35.7%	
				ND	133	25.6%	
			>70	D	13	46.2%	
				ND	119	16.0%	
Japan	2000-2002	PAGE	suckling weaning	D	36 outbreaks	18 outbreaks	[70]
South Korea	2006-2007	nested RT- PCR	3-70	D	475	38.3%	[71]
Thailand	2000-2001	antigen EIA	7-49	D	175	22.3%	[72]
Vietnam	2012	RT-qPCR	all ages	D	76	19.7%	[73]
				ND	654	24.9%	

Legend: D diarrheic; ND non-diarrheic; EIA enzyme immunoassay; EM electron microscopy; PAGE polyacrylamide gel electrophoresis; * mixed samples from multiple animals

Rotavirus A infections in pigs with and without diarrhea (Theuns et al. 2015)

- Molecular diagnostic techniques such as RTqPCR and RT-PCR → better surveillance techniques than fast antigen detection tests and virus isolation
- Pigs may become successively infected with different rotavirus A types after weaning → second replication peak less pronounced → some cross-protective immunity

Porcine epidemic diarrhea infections

- Sporadic PEDV cases on Belgian pig farms (2015): diarrhea without mortality
- Strains genetically almost identical to German and US INDEL strains → milder symptoms
- INDEL strains:
 genetically different from highly virulent US (spring 2013) and Asian PEDV strains, and the European PEDV strain CV777 (1970s-1990s)
- Diagnosis: most efficiently = RTqPCR analysis of RNA extracted from diarrheic feces; Detection of virus by ELISA or EM in feces

Swine dysentery

- Increased prevalences in many countries
- Major losses to farms
- New Brachyspira species: B. hampsonii, B. suanatina
- Treatment: expensive, few effective antimicrobials, antimicrobial resistance problem (Herbst et al., 2014)

MIC₅₀ and MIC₉₀ for pleuromutilins

(Vangroenweghe et al., 2010, ESPHM)

	Tiar	nulin	Valnemulin		
Year	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀	
2006	0.25	2	0.03	0.50	
2008	0.50	8	0.12	8	
2009	>8	>8	8	>8	

- → Significant increase in MIC values!
- → No vaccine available against *B. hyodysenteriae*

Swine dysentery: monitoring

 Demonstration of B. hyodysenteriae (and/or other types) in feces or colon:

- PCR-test: specific or more general

- bacteriology: anaerobic culture – 6-9 d

MIC testing

Serology → not in practice

Outline presentation

- Introduction
- Respiratory disease
- Enteric diseases
- Other diseases
- Discussion and conclusions

Streptococcus suis

- Early colonizer: upper respiratory tract (tonsils, nasal cavity), genital
 and alimentary tract
- **Septicaemia:** meningitis, arthritis, pericarditis, polyserositis, inflamm. heart valve, pneumonia (?)
- Zoonotic
- Isolation of pathogen in lesions no serology
- Important for preventive use of <u>antibiotics</u> in piglets

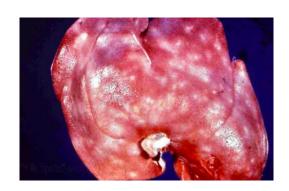
Porcine Reproductive and Respiratory Disease Syndrome (PRRS)

- Major economic losses
- Many pig herds infected
- Large heterogeneity of strains

Porcine Reproductive and Respiratory Disease Syndrome (PRRS)

- Monitoring: breeding nursery fattening
- Blood samples:
 - antibodies (IF, SN, ELISA → European vs. US strains)
 - detection of pathogen: VI, PCR
 - molecular characterisation of strains
- Oral fluids
- Control:
 - management and biosecurity, vaccination
 - filtration of incoming air \rightarrow 80% reduction of PRRS introduction (Alonso et al., 2013)

Other diseases → slaughterhouse information


Stomach lesions:

- finishing pigs: >65%

- sows: 10-15%

- A. suum infections → liver white spots (serology)
- Skin lesions → mange
- Urogenital tract infections in culled sows

Outline presentation

- Introduction
- Respiratory disease
- Enteric diseases
- Other diseases
- Discussion and conclusions

Primary disease prevention

- = pathogen (or virulent strains) not present
- Disease-free animals: quarantine, vaccination
- SPF or « high health » herds
- Depop-repop, partial depopulation, medication
- Balance: cost to become free vs. benefits of remaining free
- Difficult for diseases with airborne spread in pig dense areas → filtration of incoming air

Secondary disease prevention

- Infection is present
- Prevention of clinical disease, maintaining optimal production targets
- Control programs: good balance between host and infection pressure

Monitoring

Essential for primary and secondary prevention:

- To confirm freedom of infection
- To assess infection level, affected age group, optimal age for vaccination, prevalence and severity of lesions, etc.

Conclusions

- Most herds infected with major pathogens, some are SPF
- Monitoring essential in both situations:
 - Health → blood, oral fluids, feces, clinical scores, slaughter data, ...
 - Antimicrobial resistance
 - Performance
 - Feed & water intake, climatic parameters
- More & better diagnostics: fast testing for multiple pathogens (characterisation, virulent strains, ...)