Practical implementation of genomic evaluation across species

Daniela Lourenco

University of Georgia

EAAP 2015, Warsaw

Why is the industry interested in Genomic Selection?

Because everybody is talking about it?

- Because
 - More accurate evaluation
 - Reduces generation interval
 - Increases genetic gain

Biggest advance since AI

Animal breeding timeline

Multistep

 Single-Step GBLUP (UGA) **FUEL**

Single-Step GBLUP

BLUP

Data

$$\begin{bmatrix} x'X & x'Z \\ z'X & z'Z+H^{-1}\lambda \end{bmatrix} \begin{bmatrix} b \\ u \end{bmatrix} = \begin{bmatrix} x'y \\ z'y \end{bmatrix}$$

Pedigree

Henderson, 1963

Genomic Info

ssGBLUP

single-step genomic BLUP

Realized relationships

Aguilar et al., 2010

Lourenco et al., 2015

Expected relationship

Multistep

Single-step

- Simplicity
- Raw phenotypes
- Same models

- Is GS working?
- Which species are into GS?
 - Dairy cattle
 - Beef cattle
 - Chicken
 - Pigs
 - Sheep
 - Goats
 - Fish
 - Horse
 - Honey bee

• . . .

Which species is getting more benefits?

http://www.mbike.com/album-1001248/photo-4003750-original

- \$ Genotyping < \$ Progeny testing
- High quality phenotypes (lots)
- Al highly used

How much do we gain with GS?

Net Merit (NM\$)

Reliability = 35%

Reliability = 70%

http://www.selectsires.com

http://www.wisholsteins.com

Reliability = 85%

Which animals should we genotype?

Should we genotype females?

Does GS work for crossbred/multi-breed populations?

Are F1 worthy of genotyping?

- Will GS work when we have zillions of genotypes?
 - Are we able to handle that?

Females less impact

- Why to include females?
 - Increase the genotyped population
 - Increase accuracy / reliability of GEBV
 - Reduce error
 - Why not?

Israeli Holsteins

- 1.5M MFP records
- 830k animals in pedigree
- 1.3k genotyped bulls
- 350 genotyped cows

Lourenco et al., 2014

Small genotyped population +6 points = 39%

US Holsteins

- 11M FS records
- 10M animals in pedigree
- 34.5k genotyped bulls
- 5.2k genotyped cows

Tsuruta et al., 2014

- Holsteins
 - Small increase in accuracy
 - Females have few progeny less information
- Other species?
 - Females have higher impact more progeny
 - Broiler chicken
 - Pigs
- Broiler chicken from Cobb-Vantress
 - 15k genotyped animals
 - 200k phenotypes / pedigree

TAKE HOME #1

- Small gain in accuracy in dairy
- Females already gave information through males pedigree
- Big gain when females have higher reproductive impact

- Few genotyped animals
- Increase the size of genotyped population
- Higher accuracy

- ≠ Genetic background
- ≠ Allele frequency

http://myttyangus.com/herd-sires.html

ttp://www.richardbealblog.com/simmental-cattle/

http://www.thecattlesite.com/breeds/bee f/40/highland/overview

http://www.indiacatalog.com/photo_gallery/ic_images.php?id=40

http://rattlerow.co.uk/gp-large-white-36/

http://www.geneplus.com/GB/02_selection/femelle.htm

http://www.pic.com/Images/Users/1/usa/Gilts/PIC_ Gilts.pdf

G matrix accounting for breed-specific allele frequency

- Pigs from PIC
 - 2.3M records
 - 5.6M animals in pedigree
 - 15,800 genotyped animals
 - 6,000 Line 1
 - 6,700 Line 2
 - 3,100 F1

- Tuned G = correct G to match A₂₂
- Not_tuned **G** = no corrections

Accuracy of predicting future phenotypes for genotyped F1

Are F1's worthy of genotyping?

- Accuracy of predicting future phenotypes for genotyped F1
- Gains by genotyping F1

Increase in accuracy

35%

Are F1's worthy of genotyping?

TAKE HOME #2

- Do not need to use breed-specific allele frequency in ssGBLUP
- Scale regular G to match A₂₂
- Increase in accuracy by genotyping F1

Gains from GS in this population

Top bulls Acc ≥ 0.85 N ~ 1,700

Validation N ~ 19,000

Top B+C Acc ≥ 0.85 N ~ 2,000

TAKE HOME #3

- Keep genotyping young animals
- Look for "very informative" animals lots of links

US Holsteins

- ssGBLUP
 - Create G and A₂₂
 - Direct inversion
 - Cubic cost
 - Limit ~ 150,000
 - 1.5h for 100,000

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

Association/ Species	# Genotyped	
US Charolais	2,000	
Fish	2,500	
Pigs	16,000	/
Chicken	18,000	
Angus	132,000	/
US Holstein	900,000	X

Limitation ~150,000

Aguilar et al., 2010

ssGBLUP - APY

Misztal et al., 2015

CORE

http://www.cattle.com/articles/title/Angus+Cattle.aspx

http://www.newmanangus.com /donors/SAVBlackcapMay4568

http://www.rieksblackangus.com/

http://benfield-whiteridge.com/phil.htm

http://www.hansenangusranch.com/

Total: 52k

ssGBLUP - APY

CORE animals defined by the amount of information

CPU 2.90GHz 16 cores 256Gb

CORE animals randomly sampled from genotyped population

230 Gb

Lourenco et al., 2015

Direct Prediction

- √ Genomic evaluations
 - √ monthly
 - ✓ weekly
- ✓ New genotypes
 - √ daily

GEBV =
$$W_1$$
PA + W_2 YD + W_3 PC + W_4 DGV - W_5 PP

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

INDIRECT Prediction

GEBV $\approx w_1(\frac{1}{2}EBV_sire + \frac{1}{2}EBV_dam) + w_4(sum of all SNP effects)$

Interim evaluations for young genotyped animals

DIRECT Prediction

VS

$$H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix}$$

$$2,000$$

$$8,000$$

$$33,000$$

INDIRECT Prediction

$$H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix}$$

$$2,000 + 18k$$

$$8,000 + 18k$$

$$33,000 + 18k$$

INDIRECT Prediction

INDIRECT Prediction

INDIRECT Prediction

few genotyped animals - Index

More genotyped animals – only DGV

TAKE HOME #4

- It is possible to run ssGBLUP for huge genotyped populations with the same accuracy as regular ssGBLUP
- APY with 10,000 core animals for cattle populations
- Young genotyped animals can have interim evaluations in ssGBLUP at a small computing cost

THANKS

- Shogo Tsuruta
- Breno Fragomeni
- Yutaka Masuda
- Ignacio Aguilar
- Andres Legarra
- Ivan Pocrnic