

Genomic prediction in cattle based on sequence data

Mirjam Frischknecht EAAP 2016

Belfast

Overview

- Introduction: Simulation studies
- Material & Methods
- Results:
 - 50k GenSel
 - 50k and Sequence gbcpp
 - LD-pruned sequence gbcpp
 - Other densities: missense variants and top variants from GWAS
- Conclusion

Genomic prediction: Simulation studies

Another simulation study

Modified after Druet et al. 2014 Heredity

And now with real data ...

We have...

- ... Genotypes of 23,000 Brown Swiss (imputed to sequence level)
- ... 3 traits investigated

	Non-return rate 56 heifer (NRH)	Somatic cell score (SCS)	Stature (STA)
Reference	2,018	4,786	5,294
Validation	240	560	596

Algorithms

- Softwares/ Algorithms
 - BayesC implemented in GenSel (R. Fernando and D. Garrick, 2008)

$$y = 1 \mu + X\beta + e$$

$$\beta_{i} \begin{cases} = 0 \text{ with probability } \pi \\ \sim N(0, \sigma_{SNP}^{2}) \text{ with probability } (1 - \pi) \end{cases}$$

Algorithms

- Softwares/ Algorithm
 - BayesC-like implemented in gbcpp (T. Meuwissen)

$$y=1'\mu+Zg+X\beta+e$$

$$g\sim N(0,G\sigma_g^2)$$

$$\beta_i^{=0} = 0 \text{ with probability } \pi$$

$$\gamma_i^{=0} \sim N(0,\sigma_{SNP}^2) \text{ with probability } (1-\pi)$$

Phenotypes

- Minimal reliability
- Deregressed BV (Garrick et al., 2009)
- Youngest bulls as validation
- Prediction accuracy: cor(deregressed BV,GEBV)

Results -50k GenSel

Bern University of Applied Sciences / Qualitas AG

Results -Sequence data with gbcpp

Results - LD-pruned sequence data with gbcpp

Results -Other densities

"Top"

- GWAS results
- ▶ 50,000 Variants

"Missense"

- Missense variants in protein coding regions
- About 35,000 Variants

Bern University of Applied Sciences / Qualitas AG

Results - Other densities

Density	NRH	SCS	STA
Top GBCPP	-0.15	-0.08	-0.10
Miss GBCPP	-0.06	-0.05	-0.02
Top GenSel	-0.11	-0.07	-0.09
Miss GenSel	0.01	-0.01	0.01

Conclusion

- No improvement using sequencing data
- Also other densities do not improve the accuracy
- Currently sequence data is not an option for routine evaluation

Acknowledgements

1000 bull genomes project

