

Selecting animals for whole genome sequencing: methods optimization and comparison

Adrien Butty¹, M. Sargolzaei^{1,2}, F. Miglior^{1,3}, B. Gredler⁴, C. Baes¹

¹CGIL - University of Guelph; ²Semex Alliance, Guelph; ³Canadian Dairy Network, Guelph, Ontario, Canada; ⁴Qualitas AG, Zug, Switzerland

The Efficient Dairy Genome Canada Project

- International project aiming to develop genomic evaluation for Feed Efficiency and Methane Emissions of dairy cattle
- Genome Canada Project will sequence 48 animals to improve imputation of the Holstein population at whole-genome sequence density.
- Currently 451 Holstein bulls from the 1000 Bulls Genome Project are sequenced and available to us.

 \rightarrow The task: create a list of the animals to sequence.

Introduction

- Genotyping is getting cheaper and cheaper...
 - Routine genotyping is practised for AI bulls everywhere
 - Mostly use of medium or high density chips
 - for genotyping and for genomic evaluation
- Sequencing is also getting cheaper, but still expensive for large scale sequencing
 - Cost per genome: > \$1,000
 - Imputation of medium or high density genotypes to whole-genome sequence (WGS) density feasible, **but**
- → Good reference population needed to more accurately impute rare variants!

Selection methods

- Without genotypic information
 - pedigree based; aim for high genetic contribution
- Within genotyped population
 - based on genomic relationship matrix
 - relying on haplotype frequencies
 - target common haplotypes
 - target rare haplotypes

Currently, sequenced animals are mostly key ancestors; common haplotypes are thus expected to be sequenced.

Pedigree-based method

• Also called "Key Ancestors" method

C_n

n

- Aim to find the *n* animals explaining the most of the genetic variance of a population with: $\mathbf{p}_n = \mathbf{A}^{-1}_n \mathbf{c}_n$
 - \mathbf{p}_{n} = vector of the proportion of gene pool captured by the n animals
 - A^{-1}_{n} = subset of the numerator relationship matrix
 - average relationships of n selected animals with the entire population
 - = number of selected animals
 - True proportion of genetic variance mostly overestimated
 - \rightarrow The **A** matrix can be replaced by the **G** matrix.

Haplotype-based methods

• Druet et al. (2014) \rightarrow maximize haplotype coverage / sum of the haplotype frequency at every SNP $Sample Weight = \sum_{i=1}^{NHAP} f_i$

• Bickhart et al. (2016) \rightarrow prioritize sequencing of rare haplotypes

Sample Weight =
$$\sum_{i=1}^{N} f_i^2 - 2f_i + 1$$

Our approach

- Optimize the genetic diversity of the sequenced animals
 - use of probabilistic algorithm; simulated annealing
 - optimization based on a group of animals and not on individuals
 - already sequenced and newly selected animals accounted for
 - genetic diversity = sum of count of unique haplotypes

→ Select animals that will enable higher accuracy of imputation of rare variants within the Holstein North-American population

Candidate S

Our approach

- Optimize the genetic diversity of the sequenced animals.
 - use of probabilistic algorithm; simulated annealing
 - optimization based on a group of animals and not on individuals
 - already sequenced and newly selected animals accounted for
 - genetic diversity = sum of count of unique haplotypes

→ Select animals that will enable higher accuracy of imputation of rare variants within the Holstein North-American population

Candidate S

Index of genetic diversity

	Haplotype A	Haplotype B	Haplotype C	Haplotype D
Animal1 H1	10001110010010010001	00101001010110011100	10110000110100111010	01010001010101111110
H2	10001110010010010001	00101001010110011100	10110000110100111010	01010001010101111110
Animal2 H1	10001110010010010001	00101001010110011100	10110000110100111010	01010001010101111110
H2	10110010110001111001	00001101010110011100	0100010000100001100	10000000110001010110
Animal3 H1	10000010110010011001	00001101010110011100	10000000000100111111	11111110001010001111
H2	10110010110001111001	00001101010110011100	0100010000100001100	10000000110001010110
Animal4 H1	10010010010000011001	11001000000110011001	00011000101100001100	01010001010101111110
H2	00000011110010011001	11101101010110011100	11100100101101001101	01010001010101111110
Animal5 H1	00000011110010011001	11101101010110011100	1000000100100001101	11111110001010001111
H2	10001110010010010001	00101001010110011100	10110000110100111010	01010001010101111110
	10001110010010010001	00101001010110011100	10110000110100111010	01010001010101111110
	10110010110001111001	00001101010110011100	0100010000100001100	1000000110001010110
	10000010110010011001	11001000000110011001	10000000000100111111	11111110001010001111
	10010010010000011001	11101101010110011100	00011000101100001100	
	00000011110010011001		11100100101101001101	
			1000000100100001101	\sim
	(5) +	(4) +	(6) +	(3) = (18)
	\smile	$\mathbf{\nabla}$	\bigcirc	\smile

Simulated annealing

- Find the global optimum when several local optima exist
- Accept "bad" steps when these are probabilistically near to another optimum (the good one, who knows...?)
 - high temperature \rightarrow big "bad" steps accepted
 - low temperature \rightarrow only small "bad" steps accepted

Source: Wiki User Kingpin13

Animals and genotypes

Candidates

- Holstein bulls born after 01/01/2011 in Canada or USA and genotyped with 50K or higher density
 35,706 animals
- After filtering possible crossbreds
- Sequenced animals
 - HOL or RED animals from Run5 of the 1'000 Bulls Genome Project
 - 451 animals

32,000 animals

- All genotypes (back-) imputed to 50K panel with FImpute
 - Pedigree contained 151,436 animals, up to 48 generations
 - 44,347 autosomal SNP

PCA distributions

CHANGING LEVE CHANGING LEVE

PC1

PCA distributions

PC1

Genetic Diversity Index

Proportion of rare haplotype alleles

In conclusion ...

- Methods of selection for sequencing have shifted from pedigree or SNPbased to haplotype-based methods
- Aiming discovery and coverage of rare variants at sequencing should improve their imputation accuracy
- Our method identifies animals representing the whole population as well as previous methods
- Using our approach, we hope to better cover rare haplotypes in future sequenced populations

Acknowledgements

We very gratefully acknowledge support from our funders and collaborators:

Thank you for your attention!

more about the Efficient Dairy Genome Project:

« An international initiative to decrease the environmental footprint of dairy cattle using genomics »

by Filippo Miglior, Wednesday at **14:45** in room **3B**

