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Introduction

• Controlling inbreeding in livestock species or in small 
populations

– Recessive defects, inbreeding depression, etc.

• Genomic data

– Observation of realized inbreeding

– Pedigree sometimes unavailable



Genomic inbreeding F

• Estimation with genomic relationship matrix (GRM)

– Reference population 

– Independent SNPs

– Global estimate

• Runs of homozygosity (ROH)

– Parameter definitions 

– Allele frequencies not used

– Inappropriate for low-fold sequencing



Hidden Markov models

• Models the genome as a mosaic of IBD (inbred) and non-
IBD segments (e.g., Leutenegger, 2003 - AJHG)
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Hidden Markov models

• Models the genome as a mosaic of IBD (inbred) and non-
IBD segments (e.g., Leutenegger, 2003 - AJHG)



Emission probabilities

• Probability of genotype given IBD status (emission prob.):

IBD Non-IBD

AiAi pi pi²

AiAj ε 2pipj



Transition probabilities

• Absence of coancestry change is e-α (α is the transition 
rate: recombination rate & time to common ancestor)

• Prob. new coancestry is IBD is F

• Prob. New coancestry is non-IBD equals (1-F)



Transition probabilities

• Transition matrix:

IBD Non-IBD

IBD (1-e-α)(1-F)

Non-IBD (1-e-α)F



Transition probabilities

• Transition matrix:

IBD Non-IBD

IBD e-α (1-e-α)(1-F)

Non-IBD (1-e-α)F e-α



Transition probabilities

• Transition matrix:

IBD Non-IBD

IBD e-α + (1-e-α)F (1-e-α)(1-F)

Non-IBD (1-e-α)F e-α +(1-e-α)(1-F)



Extension to WGS data

• Replace genotypes in emission probabilities:

– Use genotype likelihoods or phred scores incorporating
uncertainty on genotype calls (from VCF):

P(Data |IBD) = pi P(AiAi| Data) + pj P(AjAj| Data) + ε P(AiAj| Data) 



Extension to WGS data

• Replace genotypes in emission probabilities :

– Use genotype likelihoods or phred scores incorporating
uncertainty on genotype calls (from VCF)

– Use allele counts (allele depth – AD)

P(AD |IBD) = pi P(AD| AiAi) + pj P(AD| AjAj) 

ε included



Extension to WGS data

• Replace genotypes in emission probabilities :

– Use genotype likelihoods or phred scores incorporating
uncertainty on genotype calls (from VCF)

– Use allele counts (allele depth – AD)

• Recent implementations:

– BCFtools / RoH (Narasimhan et al. – Bionformatics, 2016)

– ngsF-HMM (Viera et al. – Bionformatics, 2016)



Limitation

• Assumes a single inbreeding event (one ancestor)

– Still a single reference population

• In livestock species, complex inbreeding

– Many common ancestors over many generations

– Variable Ne over time (including bottlenecks)



Mixture of inbreeding classes

• Mixture of several IBD and nonIBD with different age (G) 

• Emission probabilities unchanged

• Transition probabilities same principle

– Each distribution with its own mixing proportions
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Testing with simulations

• One distribution (1 age), 500 individuals, medians



Estimated F ~ Simulated F

• Simulated F = 0.05 and G = 64



Two simulated distributions

• Simulated Age,  G1 = 16 & G2 = 256



Two simulated distributions

• Mixture of 10 predefined classes (9 IBD, 1 nonIBD)



Summary of simulations

• Simulations with varying age, number of distributions, 
type of markers, low-fold sequencing data, errors

• Assessing with estimated age, mixing (1 dist.), global F, , 
local F, population and individual estimates, estimating K

• Better when younger F, larger F, more markers, higher 
MAF, higher cover, large age differences



Belgian Blue cattle (634 bulls)

Total FProportion inbreeding per age class



WGS data (high cover @114x)

• Sire x MGS mating: expected 25% at G3



WGS data (high cover @114x)

• Sire x MGS mating: expected 25% at G3

Chr Length (Mb) #het snps #snps Prop. het

2 92.385886 23 192567 1.2e-4

1 51.469735 0 117044 0

21 46.047682 1 107278 9.3e-6

16 44.281690 0 81934 0

2 34.592319 13 80042 1.6e-4

4 33.943960 4 84630 4.7e-5

4 32.406205 0 64784 0

20 30.317150 6 70982 8.4e-5

10 27.445232 2 62643 3.2e-5

23 26.648470 1 74953 1.3e-5



BBB WGS (@10-15x)

• Longest IBD segments for one sire

Chr Lenght
(HD)

#Het #SNPs Length
(WGS geno)

#Het #SNPs Prop.
Het

Lenght
(Gen. Lik)

9 94.6 2 23298 84.6 375 182480 0.0025 94.6

22 46.4 1 11834 34.1 82 69465 0.0012 45.2

13 34.0 0 7031 31.3 141 59879 0.0023 34.1

20 20.6 0 5418 20.5 127 48748 0.0026 20.7

8 16.2 0 3331 9.3 41 19566 0.0021 16.2

BovineHD WGS called genotypes WGS likelihoods



BBB WGS (@10-15x)

• Repartition in IBD classes (geno vs gen. likelihoods)



Whole Genome Sequence

• 50 sequenced Belgian Blue sires



Conclusions

• The model uses all the information

– Sequence of genotypes, allele frequencies, error rates

• The model classifies inbreeding in different age classes

– Better than just one (open perspectives)

• The model estimates local and global inbreeding

• The model can work with genotyping arrays and 
sequence data

– With different allelic spectra


