A hidden Markov model to estimate inbreeding from whole genome sequence data

Tom Druet & Mathieu Gautier

Unit of Animal Genomics, GIGA-R, University of Liège, Belgium Centre de Biologie pour la Gestion des Populations, INRA, France

Introduction

- Controlling inbreeding in livestock species or in small populations
 - Recessive defects, inbreeding depression, etc.
- Genomic data
 - Observation of realized inbreeding
 - Pedigree sometimes unavailable

Genomic inbreeding F

- Estimation with genomic relationship matrix (GRM)
 - Reference population
 - Independent SNPs
 - Global estimate
- Runs of homozygosity (ROH)
 - Parameter definitions
 - Allele frequencies not used
 - Inappropriate for low-fold sequencing

Hidden Markov models

 Models the genome as a mosaic of IBD (inbred) and non-IBD segments (e.g., Leutenegger, 2003 - AJHG)

Hidden Markov models

 Models the genome as a mosaic of IBD (inbred) and non-IBD segments (e.g., Leutenegger, 2003 - AJHG)

Emission probabilities

• Probability of genotype given IBD status (emission prob.):

	IBD	Non-IBD	
A_iA_i	$oldsymbol{p}_{i}$	p_i^2	
A_iA_j	3	$2p_{i}p_{j}$	

- Absence of coancestry change is $e^{-\alpha}$ (α is the transition rate: recombination rate & time to common ancestor)
- Prob. new coancestry is IBD is F
- Prob. New coancestry is non-IBD equals (1-F)

• Transition matrix:

	IBD	Non-IBD
IBD		$(1-e^{-\alpha})(1-F)$
Non-IBD	$(1-e^{-lpha})F$	

• Transition matrix:

	IBD	Non-IBD
IBD	e^{-lpha}	$(1-e^{-\alpha})(1-F)$
Non-IBD	$(1-e^{-\alpha})F$	e^{-lpha}

• Transition matrix:

	IBD	Non-IBD
IBD	$e^{-\alpha}$ + (1- $e^{-\alpha}$)F	$(1-e^{-\alpha})(1-F)$
Non-IBD	$(1-e^{-lpha})F$	$e^{-\alpha}$ +(1- $e^{-\alpha}$)(1- F)

Extension to WGS data

- Replace genotypes in emission probabilities:
 - Use genotype likelihoods or phred scores incorporating uncertainty on genotype calls (from VCF):

```
P(Data | IBD) = p_i P(A_i A_i | Data) + p_i P(A_i A_i | Data) + \varepsilon P(A_i A_i | Data)
```

Extension to WGS data

- Replace genotypes in emission probabilities :
 - Use genotype likelihoods or phred scores incorporating uncertainty on genotype calls (from VCF)
 - Use allele counts (allele depth AD)

Extension to WGS data

- Replace genotypes in emission probabilities :
 - Use genotype likelihoods or phred scores incorporating uncertainty on genotype calls (from VCF)
 - Use allele counts (allele depth AD)
- Recent implementations:
 - BCFtools / RoH (Narasimhan et al. Bionformatics, 2016)
 - ngsF-HMM (Viera et al. Bionformatics, 2016)

Limitation

- Assumes a single inbreeding event (one ancestor)
 - Still a single reference population
- In livestock species, complex inbreeding
 - Many common ancestors over many generations
 - Variable Ne over time (including bottlenecks)

Mixture of inbreeding classes

- Mixture of several IBD and nonIBD with different age (G)
- Emission probabilities unchanged
- Transition probabilities same principle
 - Each distribution with its own mixing proportions

Mixture of inbreeding classes

- Mixture of several IBD and nonIBD with different age (G)
- Emission probabilities unchanged
- Transition probabilities same principle
 - Each distribution with its own mixing proportions

Testing with simulations

• One distribution (1 age), 500 individuals, medians

Estimated F ~ Simulated F

Simulated F = 0.05 and G = 64

SIM 1D F=0.05 G=64

Two simulated distributions

Simulated Age, G1 = 16 & G2 = 256

Two simulated distributions

Mixture of 10 predefined classes (9 IBD, 1 nonIBD)

Summary of simulations

- Simulations with varying age, number of distributions, type of markers, low-fold sequencing data, errors
- Assessing with estimated age, mixing (1 dist.), global F, , local F, population and individual estimates, estimating K
- Better when younger F, larger F, more markers, higher MAF, higher cover, large age differences

Belgian Blue cattle (634 bulls)

WGS data (high cover @114x)

Sire x MGS mating: expected 25% at G3

WGS data (high cover @114x)

Sire x MGS mating: expected 25% at G3

Chr	Length (Mb)	#het snps	#snps	Prop. het
2	92.385886	23	192567	1.2e-4
1	51.469735	0	117044	0
21	46.047682	1	107278	9.3e-6
16	44.281690	0	81934	0
2	34.592319	13	80042	1.6e-4
4	33.943960	4	84630	4.7e-5
4	32.406205	0	64784	0
20	30.317150	6	70982	8.4e-5
10	27.445232	2	62643	3.2e-5
23	26.648470	1	74953	1.3e-5

BBB WGS (@10-15x)

Longest IBD segments for one sire

Lenght (HD)	#Het	#SNPs	Length (WGS geno)	#Het	#SNPs	Prop. Het	Lenght (Gen. Lik)
94.6	2	23298	84.6	375	182480	0.0025	94.6
46.4	1	11834	34.1	82	69465	0.0012	45.2
34.0	0	7031	31.3	141	59879	0.0023	34.1
20.6	0	5418	20.5	127	48748	0.0026	20.7
16.2	0	3331	9.3	41	19566	0.0021	16.2
	(HD) 94.6 46.4 34.0 20.6	(HD) 94.6 2 46.4 1 34.0 0 20.6 0	(HD) 94.6 2 23298 46.4 1 11834 34.0 0 7031 20.6 0 5418	(HD) (WGS geno) 94.6 2 23298 84.6 46.4 1 11834 34.1 34.0 0 7031 31.3 20.6 0 5418 20.5	(HD) (WGS geno) 94.6 2 23298 84.6 375 46.4 1 11834 34.1 82 34.0 0 7031 31.3 141 20.6 0 5418 20.5 127	(HD) (WGS geno) 94.6 2 23298 84.6 375 182480 46.4 1 11834 34.1 82 69465 34.0 0 7031 31.3 141 59879 20.6 0 5418 20.5 127 48748	(HD) (WGS geno) Het 94.6 2 23298 84.6 375 182480 0.0025 46.4 1 11834 34.1 82 69465 0.0012 34.0 0 7031 31.3 141 59879 0.0023 20.6 0 5418 20.5 127 48748 0.0026

BovineHD

WGS called genotypes

WGS likelihoods

BBB WGS (@10-15x)

Repartition in IBD classes (geno vs gen. likelihoods)

Whole Genome Sequence

50 sequenced Belgian Blue sires

Inbreeding for 50 WGS sires

Conclusions

- The model uses all the information
 - Sequence of genotypes, allele frequencies, error rates
- The model classifies inbreeding in different age classes
 - Better than just one (open perspectives)
- The model estimates local and global inbreeding
- The model can work with genotyping arrays and sequence data
 - With different allelic spectra