

NGS-based analysis of copy number variations in various cattle breeds

Magda Mielczarek Wroclaw University of Environmental and Life Sciences

detecting of CNV polymorphisms

describing the inter-individual and inter-breed variation

Dataset

- Whole genome DNAseq 146 bulls
- Illumina HiSeq next-generation sequencing platform
- 7-28 x genome average coverage
- 13 breeds / 5 breeds

Results Total number/length of dup/del called

Results Number of dup/del

• not uniformly distributed across 146 individuals dup: $P < 2.20 \cdot 10^{-16}$, del: $P < 2.20 \cdot 10^{-16}$

GUE FLV

Results Number of dup/del

- not uniformly distributed across 146 individuals dup: $P < 2.20 \cdot 10^{-16}$, del: $P < 2.20 \cdot 10^{-16}$
- not uniformly distributed across individuals within each breed

dup: P < $2.20 \cdot 10^{-16}$, del: P < $2.20 \cdot 10^{-16}$ (for each breed)

variability between breeds exists
dup: P=0.01932, del: P=0.01006 (α=0.05)

Results Length of dup/del

- distribution not the same for 146 individuals dup: $P < 2.20 \cdot 10^{-16}$, del: $P < 2.20 \cdot 10^{-16}$
- distribution not the same across individuals within each breed

dup:
$$P \in (3.02 \cdot 10^{-94}, 0.1 \cdot 10^{-12})$$

del: $P \in (1.23 \cdot 10^{-192}, 0.1 \cdot 10^{-12})$

variability between breeds exists
dup: P < 2.20 · 10⁻¹⁶, del: P < 2.20 · 10⁻¹⁶

Results

Unique, shared and breed specific duplications

• Unique (1/146): dup 84.85 %, del 77.22 %

- Max shared: dup 117/146, del 140/146
- Breed specific: min 2/N_{breed}

Results Functional CNV annotation

Results

20 most common dup (117-74 bulls) and del (140-117 bulls)

	intergenic	intron	protein coding	non-protein coding
dup	13	4	1	2
del	19	1	-	-

Common variants overlapp with DGVa

gain (Bickhart *et al.* 2012) **t**andem duplication (Boussaha *et al.* 2015) deletion (Liu *et al.* 2010, Boussaha *et al.* 2015)

Conclusions

- high complexity of a CNV landscape in Bos taurus genomes
- varying density of CNV depends on genome function
- the breed-specific phenomenon in the Fleckvieh
- deletion events in coding regions less evolutionary accepted than duplications

Acknowledgements

13

National Science Centre in Poland:

Describing the genome-wide distribution of copy number variations in various breeds of domestic cattle based on the next-generation sequencing data of 121 individuals

National Science Centre in Poland:

Resolving genetic predisposition to clinical mastitis based on whole genome sequences of 32 cows

European Union's Seventh Framework Programme

Poznan Supercomputing and Networking Center

Conclusions

- high complexity of a CNV landscape in Bos taurus genomes
- varying density of CNV depending on genome function
- the breed-specific phenomenon in the Fleckvieh
- deletion events in coding regions less evolutionary accepted than duplications

Additional slides

Additional slides number of CNVs

 χ^2 test of goodness of fit

 H₀: the number of dup/del uniformly distributed across 146 individuals

dup P < $2.20 \cdot 10^{-16}$, del P < $2.20 \cdot 10^{-16}$

$$\chi^2 = \sum_{i=1}^m \frac{(O_i - E)^2}{E},$$

where O_i denoted the number of duplications/deletions for *i*-th bull, *E* was the average number of identified deletions/duplications in the whole dataset and *m* denoted the number of bulls. The test statistic is χ^2 -distributed with m-1 degrees of freedom.

Additional slides number of CNVs

 χ^2 test of goodness of fit

H₀: the number of dup/del uniformly distributed across individuals within each breed

dup P < $2.20 \cdot 10^{-16}$, del P < $2.20 \cdot 10^{-16}$

for each breed

$$\chi^2 = \sum_{i=1}^m \frac{(O_i - E)^2}{E}$$
,

where O_i denoted the number of duplications/deletions for *i*-th bull, *E* was the average number of identified deletions/duplications for the breed and *m* denoted the number of bulls. The test statistic is χ^2 -distributed with m-1 degrees of freedom.

Additional slides number of CNVs

Kruskal-Wallis test

H₀: the variability in the number of dup/del between breeds does not exists

dup P=0.01932, del P=0.01006 (α =0.05)

$$H = \frac{12}{k(k+1)} \sum_{i=1}^{m} \frac{R_i^2}{k_i} - 3(m+1)$$

where k_i was the number of bulls belonging to *i*-th breed, and $k = \sum_{i=1}^{n} k_i$, *m* was the number of breeds and R_i denoted the sum of ranks for deletion/duplication number corresponding to *i*-th breed. The test statistic is approximately χ^2 - distributed with k-1 degrees of freedom

Shapiro-Wilk test

H₀: lengths of dup/del are normally distributed

$$W = \frac{\left[\sum_{i=1}^{\left[\frac{n}{2}\right]} a_i(n) (X_{(n-i+1):n} - X_{i:n})\right]^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

where a_i were constant from Shapiro-Wilk tables, n denoted the number of CNVs, $X_{i:n}$ was the length of *i-th* variant sorted by length. The null hypothesis is rejected when the value of the test statistic is lower than the quantile of Shapiro-Wilk distribution

Kruskal-Wallis test

H₀: the distribution of dup/del lengths is the same for 146 individuals

dup P < $2.20 \cdot 10^{-16}$, del P < $2.20 \cdot 10^{-16}$

$$H = \frac{12}{k(k+1)} \sum_{i=1}^{m} \frac{R_i^2}{k_i} - 3(m+1)$$

where k_i was the number of duplications or deletions for *i*-th bull, and $k = \sum_{i=1}^{n} k_i$, *m* was the number of bulls and R_i denoted the sum of ranks for deletion/duplication length corresponding to *i*-th bull. The test statistic is approximately χ^2 distributed with k-1 degrees of freedom

Kruskal-Wallis test

H₀: the distribution of dup/del lengths is the same across individuals within each breed

dup
$$P = 3.02 \cdot 10^{-94} - 0.1 \cdot 10^{-12}$$

del $P = 1.23 \cdot 10^{-192} - 0.1 \cdot 10^{-12}$

(min and max P-values for particular breeds)

$$H = \frac{12}{k(k+1)} \sum_{i=1}^{m} \frac{R_i^2}{k_i} - 3(m+1)$$

where k_i was the number of duplications or deletions for *i*-th bull, and $k = \sum_{i=1}^{n} k_i$, *m* was the number of bulls and R_i denoted the sum of ranks for deletion/duplication length corresponding to *i*-th bull. The test statistic is approximately χ^2 -

²¹ distributed with k-1 degrees of freedom

Kruskal-Wallis test

 H₀: the variability in the length of dup/del between breeds does not exists

dup P < $2.20 \cdot 10^{-16}$, del P < $2.20 \cdot 10^{-16}$

$$H = \frac{12}{k(k+1)} \sum_{i=1}^{m} \frac{R_i^2}{k_i} - 3(m+1)$$

where k_i was the number of bulls belonging to *i*-th breed, and $k = \sum_{i=1}^{n} k_i$, *m* was the number of breeds and R_i denoted the sum of ranks for deletion/duplication length corresponding to *i*-th breed. The test statistic is approximately χ^2 - distributed with k-1 degrees of freedom