PIG AND POULTRY PRODUCTION.

ECO-FCE

A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY
AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

BASIC DATA

Funding:

EU-FP7 (€ 6 million)

Start date:

1 February 2013

Duration:

48 months (2013 to 2016)

ECO-FCE: Lifetime performance of low birth weight piglets from hyperprolific sows is affected by peri-natal nutrition

Work package title (WP2): *Identification and optimization of feed strategies*

Task 2.3: Peri-natal nutritional effects on lifetime performance of pigs

Johannes Gulmann Madsen^{1,2} and Giuseppe Bee¹ Agroscope Posieux, 1725 Posieux, Switzerland

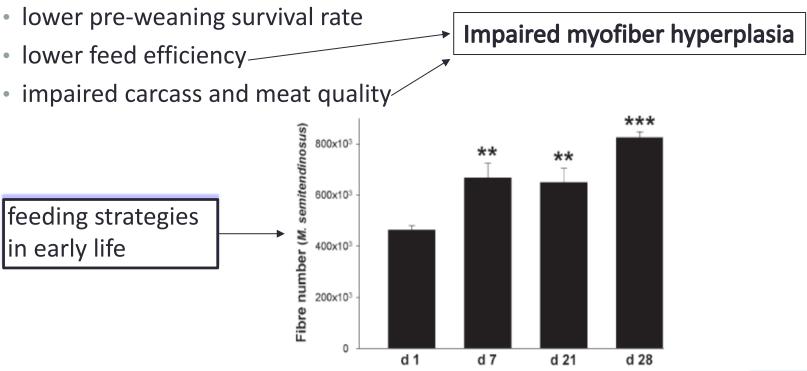
¹ Agroscope Institute for Livestock Sciences (ILS), Posieux

² ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland 29.09.2016

Content

- Objectives
- Background
- Experiment 1-4
 - Materials and Methods
 - Results
 - Conclusion
- Overall conclusion
- Perspectives

Objectives

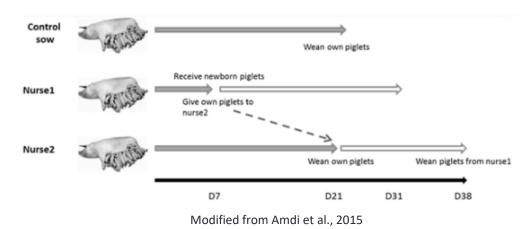

- Establish appropriate feeding strategies in the early postnatal (lactation) period to improve post natal growth efficiency of low birth weight pigs from hyperprolific sows
 - Task 2.3a: To compare the effect of daily L-carnitine or L-arginine administration on viability and muscle development of low birth weight pigs
 - Task 2.3b: To determine optimal inclusion level of most promising supplement during lactation on viability and muscle development of low birth weight pigs
 - Task 2.3c: To evaluate the long lasting effect of the dietary intervention during the lactation period on growth performance, carcass characteristics and meat quality

Background

 Low birth weight (L-BtW) pigs are a concern in modern pig production because of

The ECO-FCE project is funded by the European Union Seventh Framework Programme (FP7 2007/2013) under grant agreement No. 311794.

Berard et al., 2011


Study objectives

- Objective
 - Improve production efficiency by
 - Increasing survival
 - Enhancing post natal myofiber hyperplasia
 - Increasing growth rate
- Alternative to conventional rearing
 - Nursing sow strategies
 - Early artificial rearing in rescue decks
 - Large littermates, whole litter or L-BtW piglets.

Choice of strategy

Task 2.3a: to compare the effect of daily L-carnitine or L-arginine administration on viability and muscle development of new born piglets

- Survival, growth and myofiber hyperplasia is impaired in L-BtW piglets
 - Consequence of increased litter size resulting in intra-uterine growth restriction (IUGR)

- Choice of supplementation based on previous studies.
 - L-arginine (Kim and Wu, 2004, Yao et al, 2008).
 - Promotes: Survival, growth and protein synthesis.
 - L-carnitine (Lösel et al, 2009; Keller et al., 2009).
 - Promotes: Post natal myofiber hyperplasia in L-BtW piglets.

Exp. 1

- 3 week trial
- Born from hyperprolifc sows (>15 born/litter)
- Birth weight < 1.2 kg
- Restricted feeding
- Day 7 − 28
- Piglets weighed weekly and feed intake measured daily
- Slaughtered day 28

Ingredients, %	CTRL	CAR	ARG
Whey powder	61.6	61.6	61.6
Whole milk protein	28.0	28.0	28.0
Milk protein	6.2	6.2	6.2
L-arginine, g/kg BW · piglet ⁻¹ · d ⁻¹	-	-	1.08
L-carnitine, g piglet · d ⁻¹	-	0.40	-
Analyzed composition, % DM			
Gross energy, MJ/kg DM	17.9	17.9	17.9
Crude protein	21.1	21.1	21.1
Crude fat	7.8	7.8	7.8

Materials and Methods

- Traits of interest:
 - Growth perfomance
 - Blood metabolites
 - Carcass composition
 - Organ weights
 - Semitendinosus muscle:
 - Myofiber number and size (histology)
 - Energy metabolism in muscle (enzym activity)
 - Gene expression analysis of myogenic- and proteasome related genes.

Results Exp. 1

	Dietary treatment			Sow*
	CTRL	CAR	ARG	
Birth weight, kg	1.050	1.028	1.036	-
BW d 7, kg	1715	1821	1693	-
BW d 28, kg	4.298	4.854	4.729	-
ADG d 7-28, g	124	144	141	195
ADFI d 7-28, g DM	140	158	158	168
Energy intake, MJ/d	2.51	2.84	2.84	4.31
G:F d 7-28	0.88	0.91	0.89	1.15

^{*}Suckling pigs (BW d 10: 3.32 kg) average of d 10-13 and 17-20 of age (Theil et al., 2007)

Results Exp. 1

Key enzyme for following pathways

Citric acid cycle activity

• Citrate synthase (CS)

Lipid oxidation

 β-hydroxyacyl-CoA dehydrogenase (HAD)

Glycolytic capacity

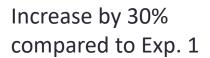
- Lactate dehydrogenase (LDH)
- LDH:CS and LDH:HAD = markers for muscle maturity
- Reflect the relative importance of glycolytic compared to oxidative metabolism in muscle.

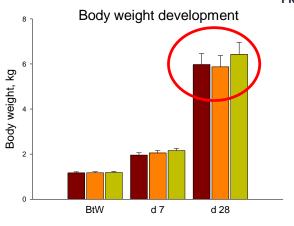
	Treatment			
Item	CTRL	CAR	ARG	
Dark portion				
CS (× 10 ⁻²)	0.428 ^y	0.393 ^{xy}	0.357 ^x	
LDH	0.930 ^a	2.088 ^b	1.617 ^b	
LDH:HAD	3.63ª	9.09 ^b	6.29ab	
LDH:CS	228.84ª	552.95 ^b	462.14 ^b	
Light portion				
CS (× 10 ⁻²)	0.405 ^b	0.384 ^b	0.290ª	
LDH	1.255 ^a	1.950 ^{ab}	2.471 ^b	
LDH:HAD	7.33 ^a	11.56ab	14.62 ^b	
LDH:CS	321.33ª	529.38 ^b	904.22b	

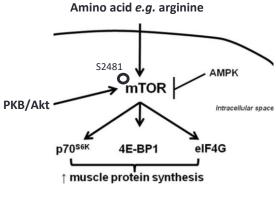
Conclusion Exp. 1 -> Changes for Exp. 2

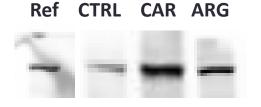
- Both supplements positively affect muscle maturation in early life
- No effects of supplements on growth performance and carcass composition
 - Low weaning weight
 - Restricted intake?

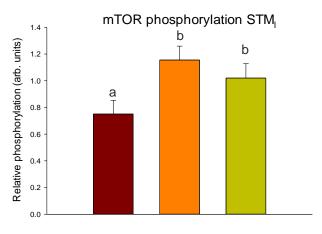
Results Exp. 2

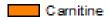

	Dietary treatment			Sow*
	CTRL	CAR	ARG	
Birth weight, kg	1.166	1.173	1.185	-
BW d 7, kg	1.958	2.051	2.158	-
BW d 28, kg	5.975	5.872	6.425	-
ADG d 7-28, g	191	181	196	195
ADFI d 7-28, g DM	218	199	236	168
Energy intake, MJ/d	3.91	3.56	4.24	4.31
G:F d 7-28	0.88	0.91	0.83	1.15


^{*}Suckling pigs (BW d 10: 3.32 kg) average of d 10-13 and 17-20 of age (Theil et al., 2007)




Results Exp. 2





a,b bars with different superscripts differ (P < 0.05)

Conclusion Exp. 2

- Compared to Exp. 1, ad libitum feeding improves growth and weaning weight
- Molecular effect of supplementation
 - Increased activation of protein synthesis pathway.
- No clear indication that one of the two supplements has an advantage over the other (CAR \(\Limin\) ARG)

Exp. 3

Optimize milk replacer

		Milk replacer			
Ingredients, %	Sow milk	Exp. 1 & 2	Optimized		
Whey powder	-	61.6	-		
Whole milk protein	-	28.0	-		
Milk protein	-	6.2	26.5		
Butter powder, 75% fat	-	-	51.0		
Glucose	-	1.0	20.0		
Analyzed composition, as fed					
Dry matter, %	~ 20.0	20.0	20.0		
Gross energy, MJ	5.5	3.6	5.5		
Crude protein	56.0	42.2	63.2		
Crude fat	83.2	15.6	81.2		

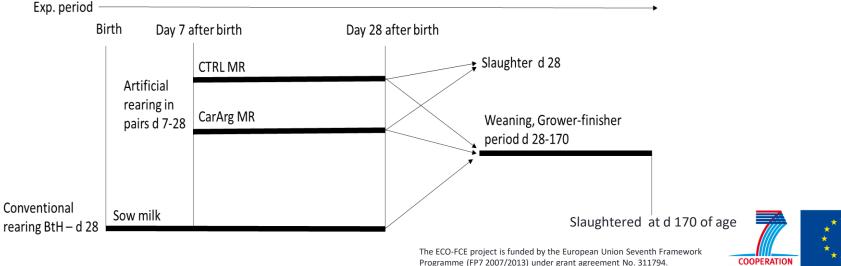
Exp. 3

- Rearing with optimized milk replacer
 - Massive diarrhea, low growth -> terminated experiment
- Speculations regarding diarrhea
 - DM, protein and/or fat content too high
- Too early artificial rearing
 - Day 3 might be too early for L-BtW

Experimental design of Exp. 4

Task 2.3c: to evaluate the long lasting effect of the dietary intervention during the lactation period on growth performance, carcass characteristics and meat quality

All piglets born from hyperprolific sows (>15 born/litter) with a BtW < 1.2 kg


- 48 piglets were artificially reared from d 7-28 of age
- 24 piglets were conventionally reared piglets by their dam for 28 d (**SOW**)

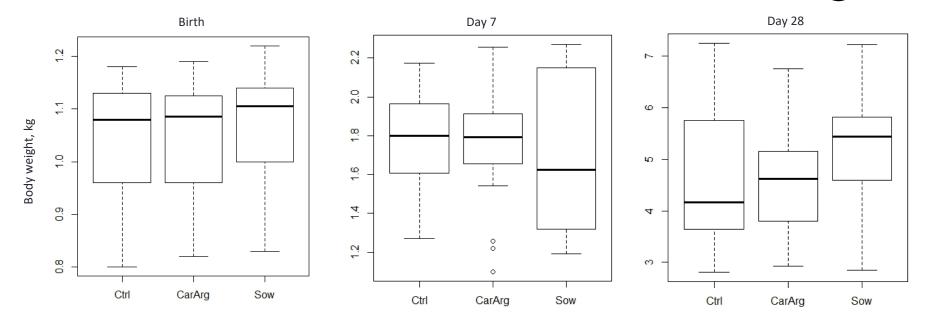
Artificial rearing:

- Commercial milk replacer (20.5% protein, 9.5% fat, 18.6 GE MJ/kg DM) • CTRL:
- CarArg: Commercial milk replacer supplemented with 0.05% L-carnitine + 1.67% L-arginine

After weaning:

• CTRL, CarArg and SOW pigs were fed standard weaning, grower and finisher diet till slaughter at 170 d of age

Programme (FP7 2007/2013) under grant agreement No. 311794.

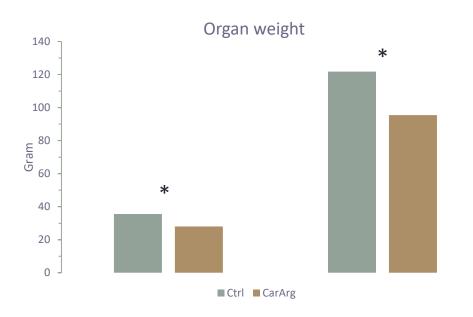

Materials and Methods

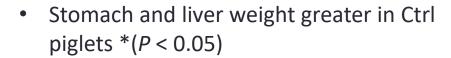
- Traits of interest:
 - Pre-weaning growth
 - Organ weight and enzyme activity in STM
 - Post-weaning growth
 - BW at slaughter (d 170)
 - Daily gain (ADG), feed intake (ADFI), feed efficiency (G:F)
 - Carcass traits
 - Hot and cold carcass weight
 - Lean meat percentage
 - Meat quality traits
 - Drip loss, 24 h

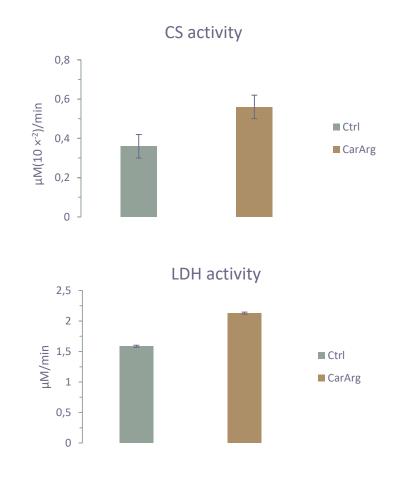
Results Exp. 4: Pre-weaning survival and growth ECOPICE

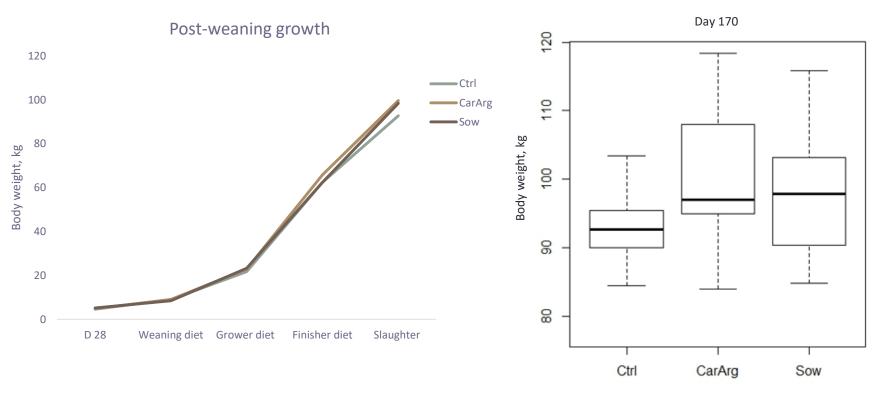
- Low weaning weight -> low DM content of milk replacer
- All piglets survived the experimental period
- 8% mortality rate d 7-28 from herd (loose-housed system)

Results Exp. 4: Pre-weaning survival and growth

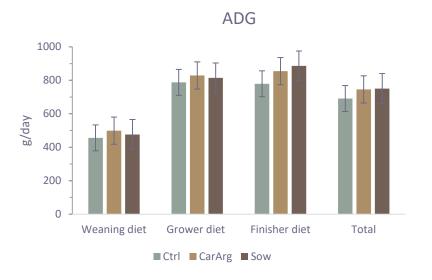

	Dietary t	Sow*	
	CTRL	CarArg	
Birth weight, kg	1.038	1.039	-
BW d 7, kg	1.794	1.735	-
BW d 28, kg	4.652	4.465	-
ADG d 7-28, g	138	136	195
ADFI d 7-28, g DM	153	148	168
Energy intake, MJ/d	2.74	2.65	4.31
G:F d 7-28	0.90	0.92	1.15


^{*}Suckling pigs (BW d 10: 3.32 kg) average of d 10-13 and 17-20 of age (Theil et al., 2007)

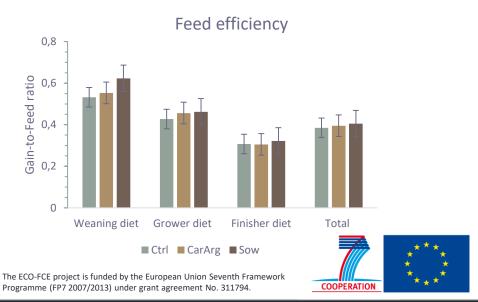

Results of Exp. 4: Organ weight and enzyme activity


 Greater CS and LDH activity in white portion of STM of CarArg piglets (P < 0.05)

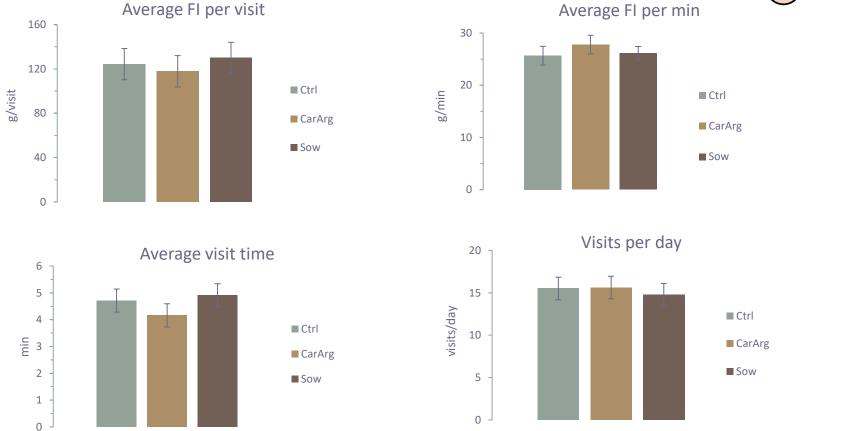
Results of Exp. 4: Post-weaning performance Economics



- No difference in slaugther weight (6 kg diff. Ctrl vs. CarArg and Sow)
- Large variation within groups

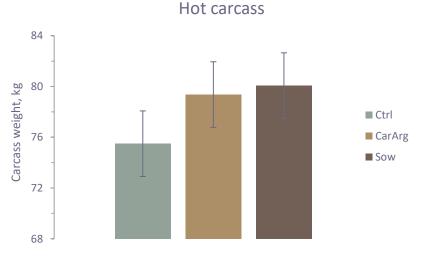


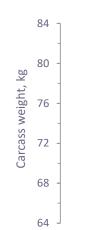
Results of Exp. 4: Post-weaning performance

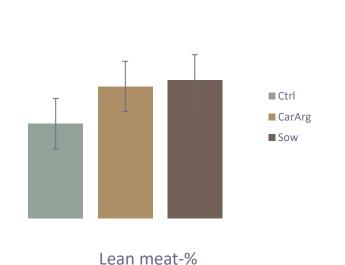


No difference between groups

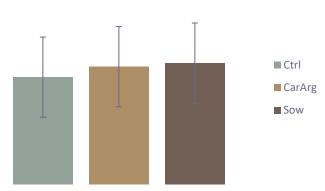
Results of Exp. 4: Post-weaning performance




Eating behaviour does not explain the difference in final slaughter weight

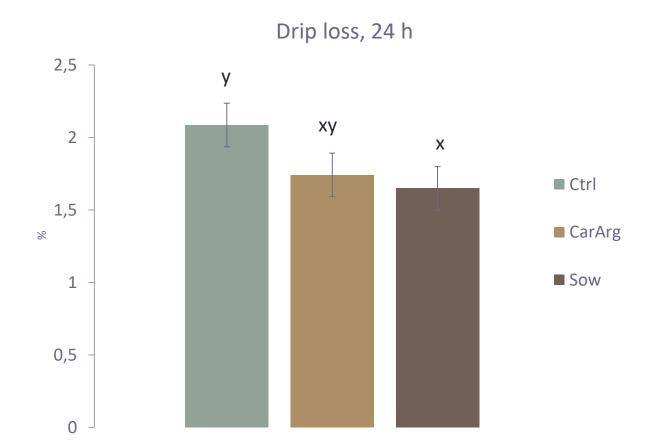


Results of Exp. 4: Carcass traits



Cold carcass

- No difference between groups
- Within the artificially reared groups, CarArg tended to increase carcass weight



Results of Exp. 4: Meat quality traits

Tendency of less water holding capacity in Ctrl group $(0.05 \le P < 0.10)$

Conclusion

- L-arginine and L-carnitine act as bioactive components in L-BtW IUGR piglets (from large litters)
- Muscle maturation and increased protein synthesis
 - did not positively influence growth performance (inconclusive)
- No clear supplemental effect on growth
- Improved survival rate of L-BtW piglets from d 7-28
- Growth performance of L-BtW is not compromised by artificial rearing

Perspectives

- Milk replacer still needs optimization
 - Dry matter, protein and fat content, plus amino acid and fatty acid composition needs adjustment
 - Is the assumption correct that sow milk is optimal for L-BtW piglets?
- Considering earlier artificial rearing
 - Survival rate lowest first three days after farrowing
 - Some countries rearing d 3 is allowed (mainly larger littermates)
 - L-BtW piglets most vulnerable

Thank you for your attention

