

67th Annual Meeting of the European Federation of Animal Science

MODULATING BIRTH WEIGHT HERITABILITY IN MICE

Formoso-Rafferty, N.¹, Cervantes, I.¹, Ibáñez-Escriche, N.^{2,3}, Gutiérrez, J.P.¹

¹Departamento de Producción Animal. Facultad de Veterinaria. UCM. ²Genètica i Millora Animal, IRTA, Lleida. ³The Roslin Institute, University of Edinburgh

Belfast, UK 29 August - 2 Septembre 2016

- Selecting to decrease the sensitivity to the environment through a reduction of environmental variability, is one of the targets of selection.
- Theoretical expressions for predicting the selection response to reduce environmental variability.
 - ✓ A divergent selection experiment conducted to modify the environmental variability of birth weight (BW).

13 generations 🗸

MOSEVAR

The heritability (h²) is considered inherent of a specific trait in a particular population.

 \checkmark Expected genetic response is proportional to h^2 of the trait.

$$R = h^2 \cdot S$$

As a result of the environmental variability selection, the h^2 can be affected. $h^2 = \frac{\sigma_a^2}{\sigma^2 + \sigma^2}$

Studying if h² for this trait could be modulated choosing the appropriate levels of the systematic effects and also by artificial selection.

Created mouse population originating from a balanced genetic contibution of:

Panmixia during 40 generations ensuring: Genetic variability Phenotypic variability

11 generations of a divergent selection experiment for BW

1641 litters and 1039 females

HETEROSCEDASTIC MODEL

- ✓ Pup **BW** as a maternal trait.
- Environmental variance is heterogeneous.

BW =
$$x_i'b + z_i'u + w_i'c + e^{\frac{1}{2}(x_i'b^* + w_i'c^*)} \varepsilon_i$$

✓ Systematic effects: line-generation (25), sex (female, male and unknown), litter size (to 2 from 17), parity number (2).

Random effects: direct additive genetic and litter effects.

BW =
$$x_i'b + z_i'u + w_i'c + e^{\frac{1}{2}(x_i'b^* + z_i'u^* + w_i'c^*)}$$

HERITABILITY

 \checkmark Differents estimations of h^2 for the traits.

 \checkmark residual variance (σ_{ei}^2) varies among systematic effects.

• Phenotypic variance (σ_p^2) is not unique.

$$\sigma_{p_i}^2 = \sigma_u^2 + \sigma_c^2 + \sigma_{e_i}^2 = \sigma_u^2 + \sigma_c^2 + e^{(\mathbf{X}\mathbf{b}^* + \frac{1}{2}\sigma_{c^*}^2)}$$

$$h_{i}^{2} = \frac{\sigma_{u}^{2}}{\sigma_{u}^{2} + \sigma_{c}^{2} + \sigma_{e_{i}}^{2}} = \frac{\sigma_{u}^{2}}{\sigma_{u}^{2} + \sigma_{c}^{2} + e^{(\mathbf{X}\mathbf{b}^{*} + \frac{1}{2}\sigma_{c^{*}}^{2})}}$$

HERITABILITY

✓ Specific σ_{esl}^2 can be also estimated for particular level *I* of a systematic effect *s*.

All the solutions were averaged within systematic effect: $\sum_{j=1,n_{sj}} \frac{b_{ij}^*}{n_{sj}}$

Next, for a particular desired level I of a particular systematic effect s, the solution for this level was added to the means for all the other systematic effects: $\sum_{i=1,n_s}^{i\neq s} \left(\sum_{j=1,n_{si}} \frac{\hat{b}_{ij}^*}{n_{sj}} \right) + \hat{b}_{sl}^*$ (this is an estimable function)

 $\checkmark \sigma^2_{esl}$ for a particular level *I* of a systematic effect *s* was:

$$\sigma_{e_{sl}}^{2} = e^{\sum_{i=1,n_{s}}^{i \neq s} \left(\sum_{j=1,n_{sj}} \frac{\hat{b}_{ij}^{*}}{n_{sj}} \right) + \hat{b}_{sl}^{*} + \frac{\sigma_{c*}^{2}}{2}}$$

Birth weight heritability across generations within lines

Birth weight heritability averaged and according to different levels of sex and parturition effects

Birth weight heritability estimated regarding litter size

IMPORTANT RESULTS REGARDING SYSTEMATIC EFFECTS

✓ Increases when litter size does

✓ Decreases if we do not consider the sex

✓ Does not vary with parity number

INTRODUCTION & OBJECTIVE

CONCLUSIONS

Modulating the heritability for birth weight seems to be possible

selecting to decrease the environmental variability
choosing the appropriate levels of the systematic effects

This research has been conducted with a partial funding through the European Project Feed-a-Gene and a project MEC-INIA (RTA2014-00015-C02-01). This experiment has been partially funded through a project Plan Nacional (AGL2008-00794).

Thank you for your attention!