

EAAP 2016

67th Annual Meeting of the European Federation of Animal Science Belfast UK, 29 Aug – 2 Sept 2016

Effects of heat stress on the transcriptomic profile of blood cells in lactating dairy goats

Universitat Autònoma de Barcelona

A. Contreras-Jodar^{*1}, A.A.K. Salama¹, S. Hamzaoui¹, G. Caja¹, M. Vailati², J.J. Loor²

¹ Group of Ruminant Research (G2R), Universitat Autònoma de Barcelona, Spain

² Mammalian NutriPhisioGenomics, University of Illinois, Urbana, USA

Change in average surface temperature

IPCC (2013)

Heat Stress effects in ruminants

Responses of dairy goats to heat stress (HS)

- Respiratory Rate (+300%)
- Rectal Temperature (+0.58°C)
- Water consumption (+202%)
- Dry matter intake (-21%)
- Body weight (-125 g/d)
- Milk yield (-4 to -10%)
- Milk quality (-12.5% CP)

• Slower Immune response when the udder is challenged with LPS

Hamzaoui et al. (2012, 2013) Love (2015)

Objectives

Evaluate the **transcriptomic response** and the metabolic pathways affected on **immune system** of **heat stressed** lactating dairy goats.

Experimental design

- Murciano-Granadina dairy goats in mid-lactation (n = 8)
- Climatic chamber:
 TN: 15 to 20°C
 HS: 37°C-12h and 30°C-12h
- TMR diet ad libitum (17% CP; 1.3 Mcal ENL) according to requirements (INRA, 2007)

Blood samples and Microarrays

- Blood samples: d 35 (n=8)
- RNA extraction: RiboPure-Blood Kit
- RNA integrity: Agilent Bioanalyzer 2100
- 24K Affymetrix GeneChip Bovine Genome Array
- GeneChip 3'IVT Express Kit

Gene expression Data Analysis

DATA PREPARATION:

Affy package (Bioconductor)

STATISTICS:

Student's t-test

Benjamini and Hochberg corrected (FDR=0.05) Fold Change threshold >/1/

DINAMIC IMPACT APPROACH (DIA):

>= 4 genes/pathway >20% coverage

Category	Impact	-Flux +Flux	Impact	
1. Metabolism				
0.1 Metabolic Pathways	I	{		
1.1 Carbohydrate Metabolism			La	arger 🛶
1.2 Energy Metabolism				
1.3 Lipid Metabolism			Direction of the Impact	
1.4 Nucleotide Metabolism			Decreased/	Increased/
1.5 Amino Acid Metabolism			DR	UR

DIA + KEGG

Bionaz et al. (2012)

Results

Top 15 Pathways affected by HS

#	Pathway	Impact	-Flux +Flux
1	Leukocyte transendothelial migration		
2	Pyrimidine metabolism		
3	Purine metabolism		
4	Cell adhesion molecules (CAMs)		
5	Drug metabolism - cytochrome P450		
6	Tight junction		
7	Fat digestion and absorption		
8	RNA transport		
9	Hematopoietic cell lineage		
10	Adipocytokine signaling pathway		
11	PPAR signaling pathway		
12	Adherens junction		
13	ECM-receptor interaction		
14	Calcium signaling pathway		
15	Arginine and proline metabolism		

RNA TRANSPORT

Reviewed by Strambio-De-Castillia et al. (2010)

- HEMATOPOIETIC CELL LINEAGE
 - Immune cells have ≠ life time.
 - Have to be constantly replaced
 - Slower creation and differenciation

Seita and Weissman (2011)

LEUKOCYTE TRANSENDOTHELIAL MIGRATION

By interaction among **Cell Adhesion Molecules** and **Extracellular Matrix**

Step 1 Rolling→SelectinsStep 2 Adhesion→Integrins

and Ig family

Ca²⁺ SIGNALING

Step 3 Extravasation

Reviewed by Etzioni (1996); Muller et al. (2011)

LEUKOCYTE TRANSENDOTHELIAL MIGRATION

By interaction among **Cell Adhesion Molecules** and **Extracellular Matrix**

Step 1 Rolling→SelectinsStep 2 Adhesion→Integrins

and Ig family

Ca²⁺ SIGNALING

Step 3 Extravasation

Reviewed by Etzioni (1996); Muller et al. (2011)

1. PPARy SIGNALING

F(x): Modulates gene expression of lipid-related genes

(Széles et al., 2007; O'Donell et al., 2014)

3. ARGININE AND PROLINE METABOLISM

F(x): Decrease inflammatory response Promote wound healing

(Gallardo-Soler et al., 2008; Munder et al., 2009)

2. Ca²⁺ SIGNALING

F(x): Platelet activation and aggregation

(Razell et al., 2013; O'Donell et al., 2014)

Up-regulated pathways in HS goats

22.2 pg of cytosolic protein/leukocyte (humans)

Immune cell fate for extra fuel and wound healing

 $RH + O_2 + NADPH + H^+ \rightarrow ROH + H_2O + NADP^+$

Hibbs et al. (2016)

Conclusions

- 1. 143 Differentially expressed genes were found in healthy lactating dairy goats after 5 wk of heat stress exposure.
 - 55 of them were up-regulated in heat stress goats involved in nucleotide catabolism and oxidation.
 - 88 genes were down-regulated in heat stress goats mainly related with RNA transport, leukocyte transendothelial migration and wound healing.
- 2. Heat stress hinders both innate and adaptive immune responses.

Thank you for your attention

A BURNEY AND STREAM STREAM