

Fertility and health traits correlations with methane emissions Larissa Zetouni¹, M. Kargo^{1,2} & J. Lassen¹ ¹Center For Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University

²SEGES, Aarhus N, Denmark

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

AARHUS UNIVERSITY

METHAGENE

Methane

Mitigation strategies

- Livestock accounts for 40% of methane production
- 87% comes from the rumen
- From grazing behavior to animal's genome

Challenges

- Phenotype
- Measuring techniques
- Costly and difficult for large scale

- Methane and Milk Yield
- Methane and Feed Intake

Missing pieces

Methane's relationship with traits of economic interest

- Fertility and health
 - Low heritabilities
 - Selection

Total Merit Index

Objective

Estimate the genetic correlations between fertility and health traits and methane emissions in Danish Holstein cattle

Hypothesis

- Data on ~ 10.000 Danish Holstein cows
 - 11 commercial herds
 - ~ 1.500 with individual methane measurements
- Fertility
 Interval between calving to first insemination
 Interval between first and last insemination
 Number of inseminations

- Health
 Udder health
 Other diseases
- 0 1 Traits O = No incidence 1 = Incidence

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Methods

- Fourier transform infrared (Gasmet DX-4000)
 - Methane measured during milking

MADSEN CO, RATIO METHOD CH4/CO₂ × 180 × 24 × HPU

 Information on milk production, live weight and days carried calf to predict CO₂ production

HPU = 5.6 x LW^{0.75} + 22 x FPCM + 1.6 x 10⁻⁵ x DCC

Methods

Bivariate linear models (DMU)

Fertility = Meethalactahiend + yearin/malon8haaysingnikanimaal + e

Health = herd + lactation + year/month calving + animal + e

Results

Descriptive Statistics						
TRAITS	MEAN	STANDARD DEVIATION	MINIMUM	MAXIMUM		
Methane	380.4	60.3	247.0	714.0		
Calving to First	77.0	39.4	4.0	359.0		
First to Last	50.2	70.9	0	341.0		
Number of Inseminations	2.20	1.62	1	14		
Udder Health	0.43	0.50	0	1		
Other diseases	0.26	0.44	0	1		

Results

Heritability estimates				
TRAITS	h²			
Methane	0.33 (0.07)			
Calving to First Insemination	0.09 (0.02)			
First to Last Insemination	0.04 (0.01)			
Number of Inseminations	0.02 (0.01)			
Udder Health	0.05 (0.01)			
Other Diseases	0.05 (0.01)			

Results

Genetic correlations estimates					
	Methane				
TRAITS	r _g	SE			
Calving to First Insemination	0.34	O.15			
First to Last Insemination	0.16	0.22			
Number of Inseminations	-0.10	0.27			
Udder Health	0.33	0.20			
Other Diseases	0.12	0.20			

Discussion

Selection for lower methane production could help improve fertility and health traits in dairy cattle. **Thank you!**

R FOR QUANTITATIVE CS AND GENOMICS