

CHICKEN EMBRYO LETHALITY ASSAY FOR DETERMINING THE VIRULENCE OF ENTEROCCUS FAECALIS

A. E. Blanco¹, M. Barz¹, W. Icken¹, D. Cavero¹, A. R.Sharifi² and M. Voss¹

¹Lohmann Tierzucht GmbH, Am Seedeich 9-11, 27472 Cuxhaven, Germany; and ²Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August-University Goettingen, 37075, Germany.

67th Annual Meeting of the European Federation of Animal Science Belfast UK, 29 Aug – 2 Sep 2016.

Ph.D. Genetic approaches to reduce the vulnerability of amyloidosis in laying hens.

BREEDING FOR SUCCESS ... TOGETHER

TABLE OF CONTENTS

- > INTRODUCTION:
 - Context.
 - Objective.
- MATERIAL & METHODS.
- > RESULTS & DISCUSSION.
- > CONCLUSION & RESEARCH NEEDS.
- > QUESTIONS.

INTRODUCTION

- > AA Amilodosis = Amiloid Artropathy in chickens:
 - Affects ≈ 20 30 % of all European chicken flocks (Landman et al., 1998).

IBERTEC

Landman et al. (1999)

> Enterococcus faecalis:

- Commensal bacterium inhabiting the gastrointestinal tract.
- Resistance
- Intrinsic → antimicrobial agents (i.e. vancomycin).
- Acquired → virulence factors (genes).

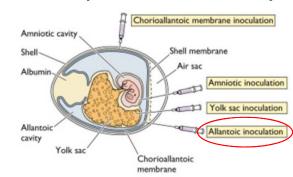
INTRODUCTION

Embryo Lethality Assay (ELA).

Determine the degree of virulence of bacteria:

- Escherichia coli.
- Yersinia enterocolitica.
- Campylobacter jejuni.

- Enterococcus cecorum.
- Francisella tularensis.
- (...)


OBJECTIVE

- > Evaluate the ELA in avian *E. faecalis* strains:
 - → Pathogenic avian strain K923/96 ≈ (AA) (Petersen et al., 2009).
 - → It will be used as reference strain in further analysis.

- Embryo Lethality Assay (ELA):
 - Inoculate embryo chickens
- First quality hatching eggs.
- 10-day old embryos.
- Allantoic cavity.
- Inoculation volume: 0.2 ml/egg.
- Embryonic mortality

 Candling daily over a period of 7 days.
- Evaluation of the macroscopic lesions.
- Re-isolation of E. faecalis p.i..

➤ Overall scope:

	Trial	I	II	III	IV	Viable count (cfu/ml)		
	Avian <i>E. faecalis</i> strain	K923/96	K923/96	K923/96	K923/96	-		
3,443	* No. eggs/control	60	57	108	148	-		
white eggs	No. eggs/dose	100	290	300	300	-		
	** Infectious dose (cfu/ml)	2,500	-	-	-	> 1,000	Inoculum verificatio	
		250	-	-	-	> 250		
		25	25	25	25	85 - 258		
		-	5	5	5	15 - 60		
		2.5	2.5	2.5	2.5	10 – 35		

^{*}Control group → Sterile phosphate-buffered saline.

^{**}Rudolph (2004) → The number of counted colonies may vary between 500 and 5,000 cfu/ml.

- > Statistical Analysis (SAS/STAT 9.4):
 - Using flowing generalised linear model with SAS GLIMMIX Proc.:

Logit
$$(\pi_{rs}) = \eta_{rs} = \log (\pi_{rs}/1 - \pi_{rs}) = \varphi + \alpha_r + \beta \alpha_s$$

 η_{rs} = Linear predictor.

 π_{rs} = Probability to survive.

 ϕ = Overall mean effect.

 α_r = Fixed effect of concentration level.

 β_s = Random effect of trial.

- > Statistical Analysis (SAS/STAT 9.4):
 - Generalised linear model:

Logit
$$(\pi_{rs}) = \eta_{rs} = \log (\pi_{rs} 1 - \pi_{rs}) = \varphi + \alpha_r + \beta (\alpha)_s$$

→ Estimated parameters on the logit scale were back-transformed using the inverse link function:

$$\pi = \frac{\exp(x\beta)}{1 + \exp(x\beta)}$$

- > Statistical Analysis (SAS/STAT 9.4):
 - Using survival analysis with SAS LIFETEST Proc.:
 (Kaplan-Meier method)

$$\hat{S}(t) = \prod_{j:t_j \ge t} \left[1 - \frac{d_j}{n_j} \right]; for t_1 \le t \le t_k$$

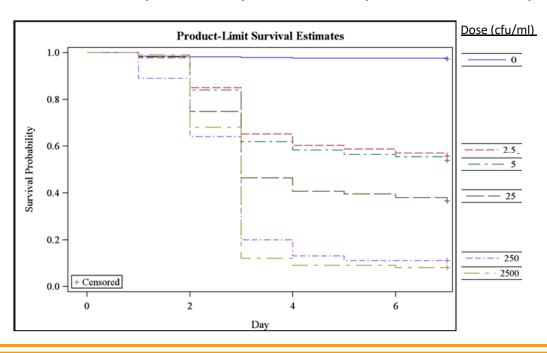
 $\hat{S}(t)$ = Survival function.

 n_i = Individuals at risk.

 d_j = Number of individual die at time t_j .

RESULTS & DISCUSSION

> Embryonic mortality rate (%):


Infactious dosa (afu/ml)*		Tri	als		Average mortality rate (9/)
Infectious dose (cfu/ml)*	ı	II	III	IV	Average mortality rate (%)
2,500	92.0	-	-	-	92ª
250	89.0	-	-	-	89 ^a
25	71.0	48.0	85.0	56.0	66 ^{ab}
5	-	50.0	53.0	38.0	46 ^b
2.5	25.0	45.2	68.0	30.0	41 ^b
Control	3.3	0	3.7	2.0	2.6 ^c

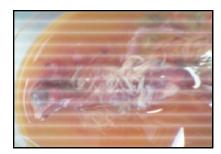
^{*} By an inoculation volume of 0.2 ml/egg, 500, 50, 5, 1 and 0.5 cfu/egg were inoculated respectively.

RESULTS & DISCUSSION

> Embryo survival expressed as Kaplan-Meier curve:

Survival probability over the experimental time period (7 days).

The higher the infectious dose:


- the greater the embryo mortality rate.
- the lower the embryonic survival time.

RESULTS & DISCUSSION

Macroscopic lesions:

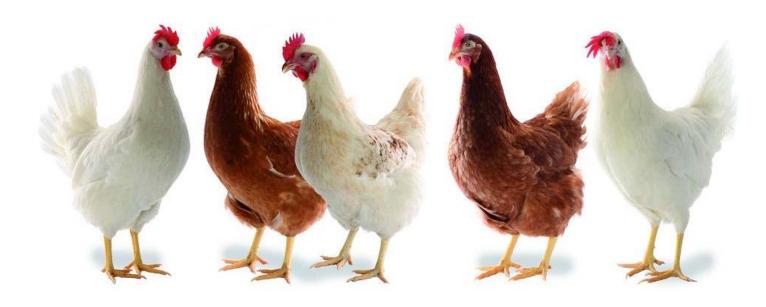
Cranial & skin haemorrhages & plumage loss.

Malformations & underdevelopment.

> Re-isolation of *E. faecalis* p.i.:

- Infected embryos: always positive.
- Control group: always negative.

CONCLUSION


- **ELA:**
 - Can be used as an *in vivo* model \rightarrow Dependent on the dose.
 - Determine the virulence of *E. faecalis* strains.

RESEARCH NEEDS

- ➤ More ELAs with different *E. faecalis* strains are required:
 - To confirm its capacity for discriminating strains.

THANK YOU FOR YOUR ATTENTION

QUESTIONS?