Comparing Agricultural and Urban Nutrient Loads to Coastal Systems

João Pedro NUNES, João Gomes FERREIRA

University of Aveiro, Portugal NOVA University of Lisbon, Portugal Longline Environment, UK

Nutrient loads and aquaculture

- Aquaculture and nutrients: an ambivalent relation
 - Nutrients support primary production and food, but...
 - Excessive loads can cause eutrophication
- Nutrient management has focused on wastewater
 - Point sources: easy to locate, measure and control
- Agricultural sources are more difficult to manage
 - Variable in space, depend on weather
 - Difficult to measure and to identify sources
 - Difficult to design control measures

Objectives of this work

Lough Foyle

- Compare nutrient loads to coastal systems from wastewater and agriculture...
 - Recent evolution
 - Spatio-temporal patterns
 - Sources and potential impacts
- ... for two coastal systems with important aquaculture sites
 - Lough Foyle, UK
 - Ria Formosa, Portugal

Study systems

Lough Foyle

- Oceanic climate
- Aquaculture: mussels and native oysters (bottom culture)
- Trophic status:
 - High nutrient loads, mostly N
 - Few eutrophication symptoms: shellfish filtration (?) and P limitation (?)

Ria Formosa

- Mediterranean climate
- Aquaculture: clams (traditional) and mussels (offshore, developing)
- Trophic status:
 - High nutrient loads
 - Few eutrophication symptoms due to strong water exchange...
 - ... but occasional water quality issues and macroalgae blooms

Lough Foyle: Loughs Agency 2012: Lough Foyle Status Report **Ria Formosa:** Ferreira et al. 2013: FORWARD project report

Lough Foyle watershed

Lough Foyle

• Area: 3709 Km²

• Wastewater discharge: 210,000

inhabitants

• Landuse:

- Pasture: 54%

- Rangelands: 43%

- Croplands, urban: 3%

Ria Formosa Watershed

• Area: 745 Km²

• Wastewater discharge: 300,000 inhabitants

- Landuse:
 - Croplands intensive orchards: 18%
 - Croplands rainfed orchards: 29%
 - Rangelands: 48%
 - Other crops, urban, pasture: 5%
- Contaminated coastal aquifer

- Large-scale aquaculture assessment projects in both systems
 - Linking catchments to coasts
 - Linking management agencies and research institutes
 - Tool: complex modelling framework

Lough Foyle

EASE: Enhanced SMILE for Lough Foyle

Ria Formosa

Framework for Ria Formosa water quality, aquaculture & resource development

Wastewater nutrient loads

- Point-sources:
 - Measured, easy to quantify
 - Relatively constant along the year
- Recent trends:
 - Improved wastewater treatment by adding nutrient removal
 - Ria Formosa: increase in population served by treatment plants
- Wastewater treatment close to maximum

Agriculture nutrient loads

- Diffuse sources:
 - Difficult to measure, quantify and assign to sources
- Trends difficult to assess:
 - Monthly measurements do not capture peak flows
 - High temporal variability
- What was the impact of fertilizer control measures?

Agriculture nutrient loads

- Diffuse sources:
 - Difficult to measure, quantify and assign to sources
- Trends difficult to assess:
 - Monthly measurements do not capture peak flows
 - High temporal variability
- What was the impact of fertilizer control measures?

Nutrients and aquifers

- Lough Foyle: impermeable geology
 - Delays part of nutrient loads:
 spread during several months
- Ria Formosa: coastal aquifer
 - Permeable and already contaminated
 - Flows under the coastal system: only part resurfaces
 - Delays part of nutrient loads: spread during years/decades

Nutrients and aquifers

- Lough Foyle: impermeable geology
 - Delays part of nutrient loads:
 spread during several months
- Ria Formosa: coastal aquifer
 - Permeable and already contaminated
 - Flows under the coastal system: only part resurfaces
 - Delays part of nutrient loads: spread during years/decades

Nutrient load assessment strategy

- Calculate daily loads and assess sources:
 - Wastewater: direct measurements
 - Agricultural loads: hydrological model SWAT
- Aquifer loads (Ria Formosa): measurements on the Ria Formosa sediment bed

Leote et al., 2008

Ria Formosa

- → 7 WWtW
- → SWAT: 331 landscape units in 50 streams
- → Representative year: 10.2007 to 09.2008

WWtW: WasteWater treatment Works

Lough Foyle

- → 11 WWtW
- SWAT: 330 landscape units in 29 streams
- Representative year: 2014

SWAT: Soil and Water Assessment Tool SWAT Soil & Water Assessment Tool

Calibration & validation

- Measurements do not capture the major peaks, especially in Ria Formosa
 - Streamflow: good model performance
 - Nutrients: model not easy to evaluate; best available estimate

Calibration & validation

- Measurements do not capture the major peaks, especially in Ria Formosa
 - Streamflow: good model performance
 - Nutrients: model not easy to evaluate; best available estimate

Nutrient budgets & sources

- Agriculture loads dominate in Lough Foyle:
 - large watershed, no aquifer losses
 - high N mobilization
- N/P ratio:
 - Redfield Ratio (mass): N/P = 7.2
 - Lough Foyle: N/P = 19.8
 - Ria Formosa: N/P = 5.6

	System	Nitrogen	Phosphorus
Agriculture per area (kg/ha.yr)	Lough Foyle	21.9	0.9
	Ria Formosa	2.8	0.7

Lough Foyle: time patterns

- Loads concentrated in Autumn and Winter:
 - N: regular baseflow (groundwater) + stormflow peaks
 - P: stormflow peaks
- Seasonality:
 - Autumn/Winter: dominated by watershed and N
 - Summer: dominated by wastewater, N&P equilibrium

 Agricultural loads cause: seasonality, irregularity and N dominance

Ria Formosa: time patterns

- Relatively regular loads, with irregular stormflow peaks
- Small seasonality:
 - Autumn to Spring: dominated by wastewater
 - ... except for a few days dominated by watershed stormflow
 - Summer: dominated by wastewater

 Agricultural loads cause: high irregularity (with small seasonality)

Ria Formosa: spatial patterns

- Contrast between annual and stormflow loads
 - annual: mostly western RF WWtW
 - stormflow: mostly eastern RF rivers
 - more sensitive coastal area due to restricted ocean exchange
- Agricultural loads may cause localized, short-term problems

Fraction of annual load in 8 to 12-Apr-2008

Nutrient	wwtw	Watershed	Total
Nitrogen	1.6%	30%	8%
Phosphorus	1.6%	44%	19%

Agricultural impacts

Lough Foyle nutrient loads

- Wet climate: strong seasonality + peaks after rainfall
- Wet climate + Pasture:
 - Abundant water mobilizes N
 - Vegetation cover: low P exports
- Simple geography: most loads from the estuary of River Foyle
- Simple geology: strong N load seasonality via baseflow

Ria Formosa nutrient loads

- <u>Dry climate</u>: loads concentrated in peaks after rainfall
- <u>Dry climate + Orchards</u>:
 - Less water available to mobilize N
 - Lower vegetation cover: P exports
- Complex geography: load locations vary with weather
- Complex geology: not all N loads reach the coastal system

Nutrient loads and aquaculture

- Aquaculture and nutrients: an ambivalent relation
 - Nutrients support primary production and hence food, but...
 - Excessive loads can limit aquaculture through eutrophication
- Lough Foyle: low impacts despite high N loads; P limitation?
- Ria Formosa: occasional impacts due to agriculture
 - High loads counteracted by strong exchange with ocean...
 - ... but occasional acute water quality issues: stormflow loads?
- Wastewater control should be supplemented with agricultural nutrient management

Agricultural nutrient management

- Water Framework Directive quality goals might require load reduction to streams and coastal systems
- Challenges for agricultural nutrient management:
 - Monitoring: often too infrequent to understand issues
 - Fertilization control: limited by plant requirements
 - <u>Agricultural abandonment</u>: negative economic impacts
 - Long-term contamination: nutrient stocks remain in soils and groundwater decades after fertilization control
- Innovative solutions: limiting the connectivity between fields and streams through landscape management

http://connecteur.info/

Conclusions

- Agricultural nutrient loads can impact coastal systems
- With wastewater treatment widespread, nutrient management should focus on agriculture
 - Often as important as wastewater loads
 - Irregular loads, complex impacts
 - More challenging to monitor and control
- If farmers (land and sea) understand their watersheds, they can participate on nutrient management decisions

