IMPACT OF PRE-WEANING NUTRITIONAL REGIMES ON MAMMARY GLAND DEVELOPMENT IN HEIFER CALVES

SA McCoard, T Silvestre, P Muir*, J Koolaard, A Molenaar, V Burggraaf, N Wards, D Pacheco

*On-Farm Research, Hastings, New Zealand

Session 34: "Physiological limits of performance due to disproportionate growth".

CALF REARING IN NEW ZEALAND

- Pasture-based system
- Progeny from dairy farming systems are artificially reared for herd replacements or beef production

HIGHLY VARIABLE REARING SYSTEMS

- Variable daily milk/MR volume (10-20+% of body weight)
- Concentrates (grain) and/or conserved forage
- Pasture-based + concentrates
- Wean between 6-15 weeks

GOAL – LIFETIME PRODUCTIVITY

- 70% of NZ dairy heifers below target weight at mating (McNaughton et al 2012)
- Improved rearing of heifer replacements 56% now reach target weights at mating (Handcock et al. 2016)
- Calving live weight affects first lactation milk production (van der Waaij et al. 1997; Carson et al. 2002; Macdonald et al. 2005)
- Potential lifetime productivity effects from enhanced heifer rearing (Soberon et al. 2012, Khan et al. 2011, Davis Rincker et al. 2011, Geisinger et al. 2016)

GOAL – LIFETIME PRODUCTIVITY

- Pre-weaning ADG explains ¼ of variation in first lactation milk production (0.1 kg ↑ ADG = 107 kg more milk)
 (Soberon et al. 2012)
- Adequate nutrients + ADG > 0.5 kg/d + good weaning practices can enhance first lactation performance (Geisinger et al. 2016)
- Lactation performance influenced by varying nutrient intake levels during key phases of mammary development (Moallem et al. 2010; Khan et al. 2011; Bach 2012)

MAMMARY DEVELOPMENT

- Primary dairy industry goal healthy heifers with mammary glands that synthesise and secrete large amounts of high quality milk
- Structural development of the mammary gland is critical for future milk production
- 5 phases of mammary growth:

Source: Rezaei et al. 2016

FETAL – EARLY POSTNATAL PERIOD

- Mammogenesis initiated in embryonic and fetal life
- Negligible mammary fat pad at birth
- At 9 weeks (~80 kg BW) ~80g fat pad and ~1.5g parenchymal mass (Daniels et al. 2009)
- Parenchyma consists of gland cistern + ductal system lined with double-layered epithelium and terminal alveolar structures (Mayer et al. 1961)

Pre-pubertal heifer

Source: Rowson et al. 2012

PRE-PUBERTAL NUTRITION - FUTURE MILK YIELD

- Most studies focus on assessment around puberty
- Nutrient intake = 1 mammary fat pad (Sejrsen et al. 1982; Capuco et al. 1995; Radcliff et al. 1997)
- High energy diets 3-10 months ↓ mammary growth relative to body weight leading to over-conditioned heifers and ↓ milk production

(Sejrsen et al. 1982; Petitclerc et al. 1999, Radcliff et al. 2000)

Heifers fed a higher plane of nutrition post-weaning but before puberty – negative effect on mammary development and future milk yield

PRE-WEANING NUTRITION

- Hormones and nutrition play key roles in mammary development (Geiger et al. 2016; Brown et al. 2005)
- From birth to puberty:
 - Variable response of parenchyma to the level of nutrient intake (Meyer et al. 2006 a,b; Geiger et al. 2016)
 - Mammary fat pad is responsive to nutrient intake suggested dietinduced adipocyte hypertrophy (Meyer et al. 2006a,b)
 - Enhanced pre-weaning nutrition may promote mammary development and future production
 - More research required to understand underpinning mechanisms

OVERARCHING GOALS:

To understand ruminant early-life nutritional principles to:

- Prepare the digestive and metabolic capacities of dairy-beef calves for improved survival, growth and beef production performance on pasture
- 2. Program key tissues and immune, metabolic and/or endocrine systems

OBJECTIVE:

To evaluate the effect of contrasting nutritional regimes pre-weaning on calf growth and development

Targets include:

Rumen development
Small intestine development
Immune function

Mammary development

Muscle development Adipocyte development

MATERIALS & METHODS

• 64 Hereford x Holstein Friesian heifer calves

Group	Milk Replacer (MR)			Meal	Target outcome
	Feeding level (% BW)	Fat (%)	Protein (%)	CP 19% of DM; ME 13 MJ/kg DM	
Control	12.5	20.4	22.8	Standard ad lib	Typical NZ dairy- beef rearing diet
High fat MR	12.5	30.5	22.6	Standard ad lib	Mimic obesogenic diet
High starch meal	12.5	20.4	22.8	High fermentable starch <i>ad lib</i>	Promote rumen development
Higher volume MR	20	20.4	22.8	Standard restricted	Restrict rumen development

METHODS

- Calves reared in individual pens for 7 weeks
- Weaned onto pasture meal removed ~12 weeks, managed as one group
- Weekly live weight
- Mammary gland dissected and weighed at slaughter -6 weeks & 6 months of age
- Mammary samples (n=2/animal) collected from the fat pad adjacent to parenchymal tissue below the teat – one from each hindquarter

METHODS

- Tissues were fixed in 4% paraformaldehyde, processed, and 4µm sections stained with H&E
- Fat pad morphology evaluated using image analysis
- At least 100 randomly selected individual fat cells were measured per animal
- Data log transformed to normalise the data and analysed using the REML algorithm in linear mixed effects model with the fixed effect of arrival group (R Core team 2012)

LIVE WEIGHT TO 6 MONTHS OF AGE

- 1. 492 ± 15
- $2. 323 \pm 25$
- 3. 474 ± 21
- 4. 691 ± 10

Milk DM intake (kg)

- $1.21.0 \pm 0.37$
- $2.20.9 \pm 0.41$
- $3.20.8 \pm 0.54$
- 4. 58.6 ± 1.07

Meal DM intake (kg)

- 1. 23.7 ± 0.91
- 2. 15.7 ± 1.86
- 3. 19.6 ± 5.45
- $4.4.7 \pm 0.56$

MAMMARY GLAND SIZE – 6 WEEKS

Calves fed high milk volume had 1.5X heavier mammary glands - data adjusted to a common body weight.

MAMMARY FAT CELL SIZE – 6 WEEKS

Calves fed high milk volume had larger average fat cell size (P<0.001) than all other groups

MAMMARY FAT CELL SIZE DISTRIBUTION – 6 WEEKS

High milk volume fed calves had 2.5 to 3.5X more large fat cells compared to the other groups (P<0.001)

Chi-square test for association between treatment & size group

MAMMARY GLAND DUCT/PARENCHYMA AND FAT PAD MASS – 6 MONTHS

Mammary gland parenchyma and fat pad mass did not differ between groups after adjusting for body weight

MAMMARY FAT CELL SIZE – 6 MONTHS

All treatment groups were different from one another (P<0.001) - High milk > Control > High Starch > High Fat

MAMMARY FAT CELL SIZE DISTRIBUTION – 6 MONTHS

High milk volume fed calves had 1.4 to 3.5X more large fat cells, and fewer small fat cells (P<0.001)

High fat milk calves had the most small fat cells (P<0.001).

Chi-square test for association between treatment & size group

DISCUSSION

- 0-3 months after birth isometric phase of mammary growth
- High milk volume (8L vs. 4L) disproportionate mammary growth relative to the other diet groups at 6 weeks
 - † fat cell size and proportion of large cells
 - Induction of early allometric growth? Accelerated maturity?
 - Associated with elevated pre-weaning ADG
- Mammary fat pad is a hormone-producing tissue (Walden et al. 1998, Meyer et al. 2006)
- Adipocyte-epithelial cell interactions critical for mammary duct growth and morphogenesis (Hovey et al. 1999)

PARACRINE – ENDOCRINE CONTROL

- IGF-1 and ovarian axis contribute to regulation of prepubertal mammary development in heifers (Akers et al. 2005)
- Potential for greater fat pad development in early life to contribute to mammary development in a paracrine and endocrine manner (Mollaem et al. 2010)
- Local IGF-1 axis and the ovary interact to optimize availability and effectiveness of IGF-1 in the gland to support growth (Berry et al. 2003)

- Circulating IGF-1 influenced by feeding at 6 weeks but not 6 months
- Local IGF axis?

KEY OBSERVATIONS

- The amount of nutrients from milk/MR, and the fat content of the milk/MR influences mammary development in the growing heifer
- Elevated milk/MR feeding induced accelerated ADG preweaning and mammary fat pad growth by inducing adipocyte hypertrophy
 - Mechanism remains to be elucidated ovarian and IGF-1 axis?
- Inclusion of highly fermentable starch in the starter diet does not influence mammary development

CONCLUSIONS

- Milk/MR feeding level and composition pre-weaning can influence mammary fat pad development
- Mechanism mediating the effect of pre-weaning nutrition on mammary growth warrants further research
- Nutritional regulation of mammary development as a mechanism to mediate the effect of high milk/MR feeding on future milk production potential remains to be elucidated

Thank you

