

GÉN SANTÉ: Improving productive health of dairy cows by genomic selection and management

H. Leclerc, A. Barbat, M. Philippe, S. Fritz, J-B Davière, L. Manciaux, F. Guillaume, T. De Bretagne, <u>I. Croué</u> and D. Boichard

Improve competitiveness of the dairy sector by the animal health

> For consumers: food security and animal welfare

> For the dairy industry: reach consumers, differientiate from dairy sector

> For breeders: reduce production costs, improve comfort, by selection and prevention

Industry partners From upstream

- Breeding compagnies

GÉN©)SANTÊ

Industry partners From upstream

- Breeding compagnies
- Milk recording / herd support organisations

GÉN©)SANTÊ

Industry partners From upstream

- Breeding compagnies
- Milk recording / herd support organisations

To downstream

- Milk processing industry

GÉN®) SANTÊ

Industry partners From upstream

- Breeding compagnies
- Milk recording / herd support organisations

To downstream

Milk processing industry

www.idele.fr

Scientific partners

- INRA
 - IDELE
- ALLICE

Gathered in UMT 3G

GÉN®) SANTÊ

Industry partners From upstream

- Breeding compagnies
- Milk recording / herd support organisations

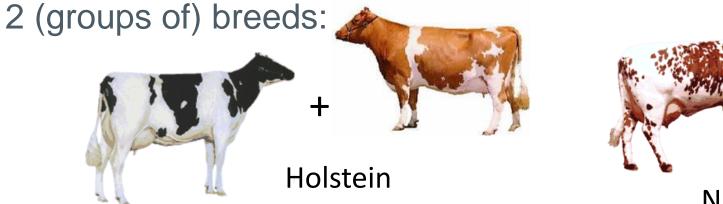
To downstream

- Milk processing industry

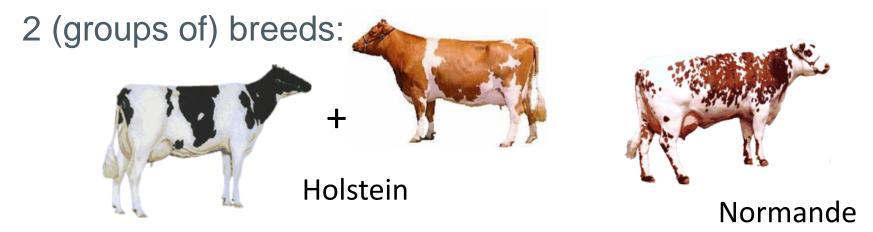
Scientific partners

- INRA
 - IDELE Ga
- ALLICE

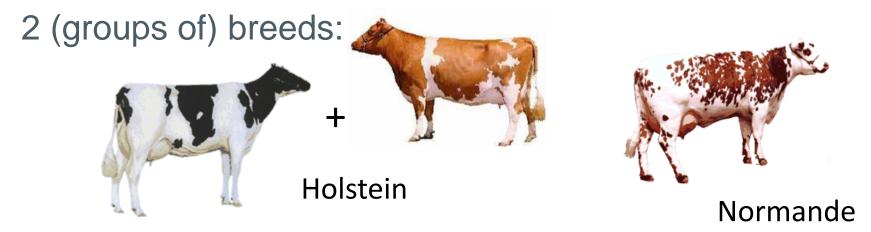
Gathered in UMT 3G



A first project bringing together in France stakeholders from all the dairy cattle sector!


Population and phenotypes available

Normande



3 (groups of) traits

All phenotypes having a significant impact on herd health, animal welfare, and economic viability of herd:

- Ketosis: ketone bodies estimated from MIR analysis at monthly test-day
- Claw health traits recorded by trained trimmers
- Other health traits recorded by breeders for metritis, retained placenta, milk fever, displaced abomasum...

3 (groups of) traits

All phenotypes having a significant impact on herd health, animal welfare, and economic viability of herd:

- Ketosis: ketone bodies estimated from MIR analysis at monthly test-day Evaluations available since Aug. 2016
- Claw health traits recorded by trained trimmers
- Other health traits recorded by breeders for metritis, retained placenta, milk fever, displaced abomasum...

A genetic evaluation on Ketosis

The main metabolic disease of dairy cows in early lactation

What is ketosis? How to control it?

GÉN©)SANTÊ

The main metabolic disease of dairy cows in early lactation

➔ What impacts?

- Decrease in milk production (-300 to -500 kg/lact)
- Impact on reproduction (cyclicity delayed and success at first service reduce up to 20%)
- Increased risk of retained placenta and displaced abomasum (x4 to 8)
- Increase in clinical mastitis (x3)

What is ketosis? How to control it?

GÉN©)SANTÊ

The main metabolic disease of dairy cows in early lactation

➔ What impacts?

- Decrease in milk production (-300 to -500 kg/lact)
- Impact on reproduction (cyclicity delayed and success at first service reduce up to 20%)
- Increased risk of retained placenta and displaced abomasum (x4 to 8)
- Increase in clinical mastitis (x3)

How often?

- Clinical ketosis: 3 to 4 % of cows
- Sub-clinical ketosis: 12 to 20 % of cows

What is ketosis? How to control it?

GÉN©)SANTÊ

The main metabolic disease of dairy cows in early lactation

➔ What impacts?

- Decrease in milk production (-300 to -500 kg/lact)
- Impact on reproduction (cyclicity delayed and success at first service reduce up to 20%)
- Increased risk of retained placenta and displaced abomasum (x4 to 8)
- Increase in clinical mastitis (x3)

How often?

- Clinical ketosis: 3 to 4 % of cows
- Sub-clinical ketosis: 12 to 20 % of cows

Aim: Prevent and reduce the risk of ketosis in dairy herd

- Management: From Cetodetect® indicator and specific technical services
- **Genetic selection:** a genetic evaluation of ketone bodies to improve genetic level of animals by selection and prevent risks.

Traits considered

- log-transformed acetone and β–hydroxybutyrate (BHB) concentrations estimated from MIR equation
- **Cetodetect® indicator** determined by a decision tree from acetone and BHB concentrations

Traits considered

- log-transformed acetone and β–hydroxybutyrate (BHB) concentrations estimated from MIR equation
- **Cetodetect® indicator** determined by a decision tree from acetone and BHB concentrations.

A large population

- **Population:** Herds from Western France since 2012
- Data edits:
 - Herds enrolled in official milk recording
 - Purebred animals
 - Lactations 1, 2, 3-5, Days In Milk 7 to 120
 - With minimum of 5 animals per Herd x test-day x breed

Traits considered

- log-transformed acetone and β–hydroxybutyrate (BHB) concentrations estimated from MIR equation
- **Cetodetect® indicator** determined by a decision tree from acetone and BHB concentrations.

A large population

- **Population:** Herds from Western France since 2012
- Data edits:
 - Herds enrolled in official milk recording
 - Purebred animals
 - Lactations 1, 2, 3-5, Days In Milk 7 to 120
 - With minimum of 5 animals per Herd x test-day x breed
- Data available for genetic parameters estimation

	Data	Nb Herd x Test-day	Nb Herds	Nb females	Nb lactations
Holstein	2 688 583	183 436	12 378	806 039	1 097 930
Normande	451 808	32 803	2 890	140 015	189 798

Genetics parameters

Model

- · Single trait, animal model, repeated data
- Fixed effects:
 - herd x year
 - month x year of test-day
 - DIM x parity
 - age at 1st calving (or days dry x parity for multiparous)
 - milk analysis laboratory x year

Random effects:

- Genetic value
- Permanent envt

Genetics parameters

Model

- Single trait, animal model, repeated data
- Fixed effects:
 - herd x year
 - month x year of test-day
 - DIM x parity
 - age at 1st calving (or days dry x parity for multiparous)
 - milk analysis laboratory x year
- Random effects:
 - Genetic value
 - Permanent envt

M M	

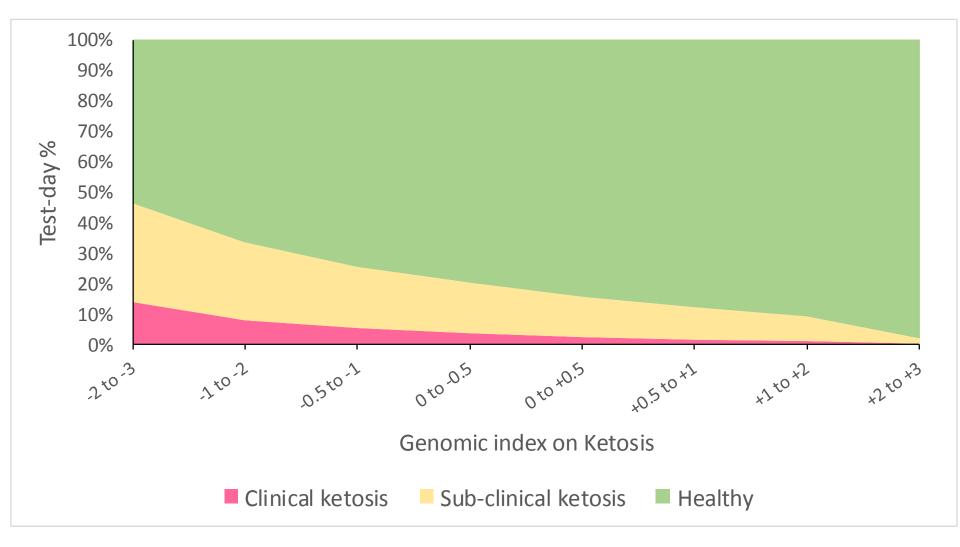
PE \ G	log[BHB]	log[acet]
log[BHB]	0.12	0.85
log[acet]	0.88	0.10

Heritabilities and correlations

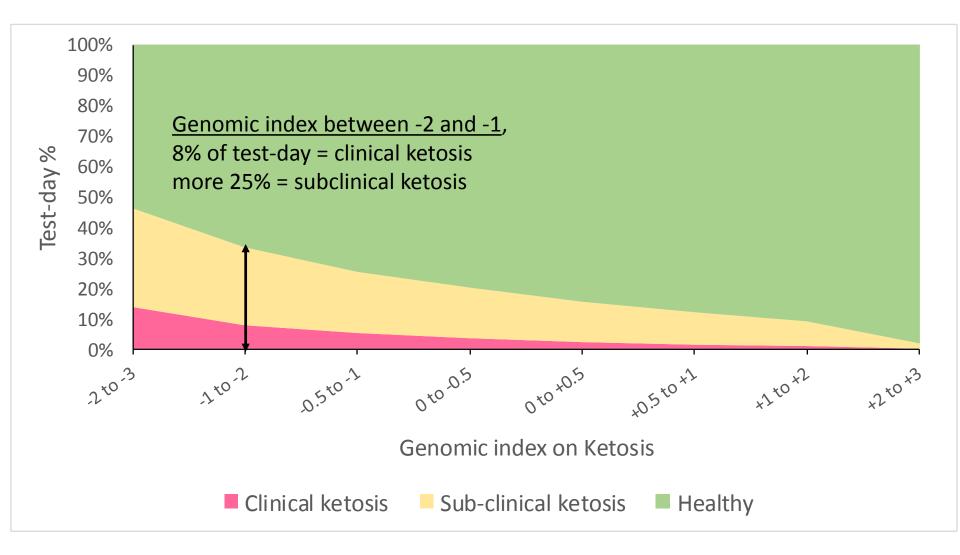
	PE \ G	log[BHB]	log[acet]
	log[BHB]	0.15	0.89
а 1	log[acet]	0.91	0.16

Marker-Assisted (MA) BLUP Genomic Evaluation:

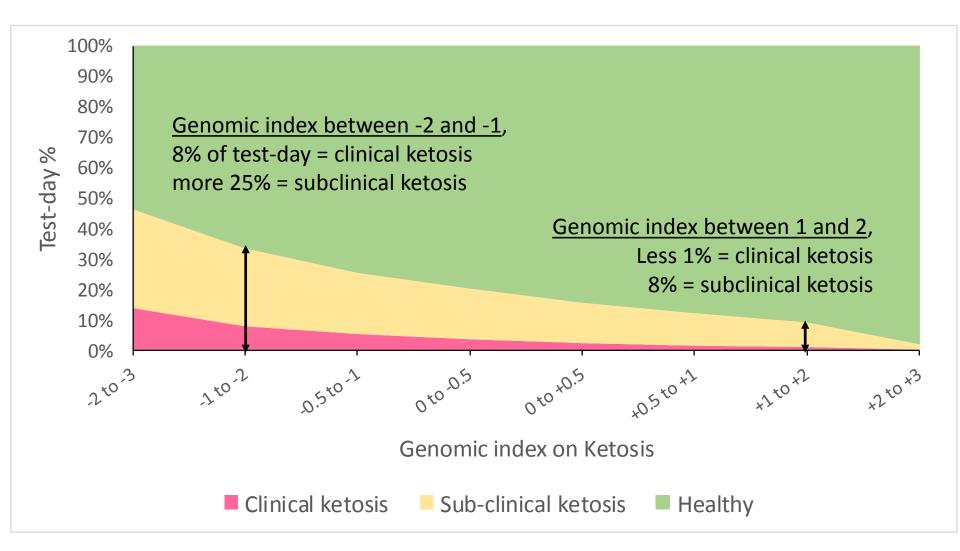
- Between 250 and 3000 pre-detected QTL (BayesCπ) included in the model using haplotypes
- + SNP from EuroG10k chip for the residual polygenic part


Marker-Assisted (MA) BLUP Genomic Evaluation:

- Between 250 and 3000 pre-detected QTL (BayesCπ) included in the model using haplotypes
- + SNP from EuroG10k chip for the residual polygenic part


Reference population = males + females

Holstein	Normande
2 999 279	487 614
887 230	147 951
10 355	1 577
26 899	5 832
4 314	1 038
67 613	15 623
	2 999 279 887 230 10 355 26 899 4 314


Incidence of ketosis as a fonction of female genomic index

GÉN®)SANTÉ

GÉN®)SANTÉ

GÉN®) SANTÉ

Data available

>7 million of data in Holstein and 1.36 million in Normande

	Holstein	Normande
Nb of females with polygenic index	1 394 951	257 785
Nb of males with polygenic index	6 069	1 077
Nb of females with genomic index	137 367	28 980
Nb of males with genomic index	26 200	4 811

First routine evaluation in Summer 2016

Data available

>7 million of data in Holstein and 1.36 million in Normande

	Holstein	Normande
Nb of females with polygenic index	1 394 951	257 785
Nb of males with polygenic index	6 069	1 077
Nb of females with genomic index	137 367	28 980
Nb of males with genomic index	26 200	4 811

2 new indexes under **GÉNO SANTÊ** label

- Ketosis index = 50% BHB + 50% acetone
- Productive health index =

30% Ketosis index30% Udder health index30% Fertility index10% Longevity

Evolution of the productive health index in the next years to **include new traits** such as claw health traits

Reliability

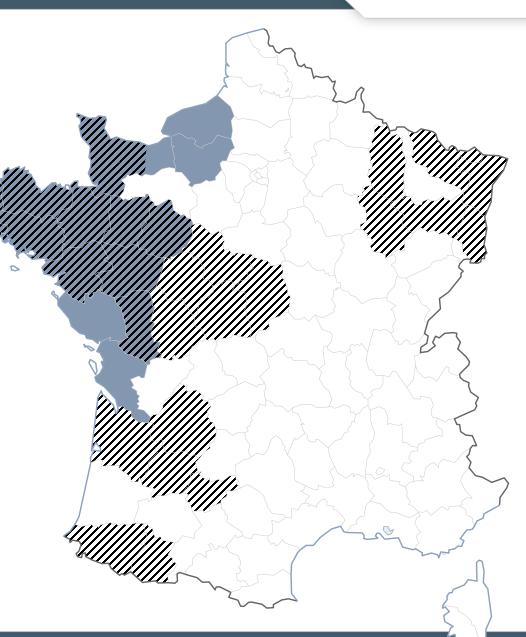
- Genomic evaluation:

	Holstein	Normande
Young animals without performance	0.66	0.58

• Reliability of Ketosis index close to that of other functional traits

- Polygenic evaluation:

- Parent average reliability around 0.30
- Cows with performances: from 0.50 to 0.60
- Bulls: >0.90 when >100 daughters with performances


GENOSANTE label

Polygenic indexes available for herds subscribing to CETODETECT® services

Genomic indexes available for all animals genotyped by EVOLUTION and breeding compagnies partners of GÉNOSANTE

Conclusion

- For breeders: cows resistant to ketosis will limit the use of drugs and time spent to individual care. It will also reduce production costs / increase profitability
- For herd support organizations: the development of a genetic evaluation on ketosis enhance Cetodetect® services
- For breeding companies: a new index as a tool for differentiation in a competitive environment

Conclusion

- For breeders: cows resistant to ketosis will limit the use of drugs and time spent to individual care. It will also reduce production costs / increase profitability
- For herd support organizations: the development of a genetic evaluation on ketosis enhance Cetodetect® services
- For breeding companies: a new index as a tool for differentiation in a competitive environment

GÉNOSANTÉ is a collective achievement around a joint project with shared interests of the entire dairy cattle sector

Additional health traits are planned for next year...

Thank you for your attention

