

Genome-wide association identify regions underlying bovine tuberculosis resistance in dairy cattle

K. Raphaka¹, O. Matika¹, E. Sanchez-Molano¹, R. Mrode², M. Coffey², V. Riggio¹, E.J. Glass¹, J.A. Woolliams¹ and G. Banos^{1,2}

¹The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK ²Scotland's Rural College, Edinburgh, UK

> 29 Aug – 2 Sept 2016 Belfast, UK

THE UNIVERSITY of EDINBURGH

Background

- A chronic disease of cattle caused by Mycobacterium bovis
- **Diagnosis of TB in UK:**
 - Skin test
 - Positive animals are culled
 - Post-mortem examination
 - Inspected for visible lesions
 - Bacteriological culture for *M. bovis*

Background

- Increasing bTB incidences in GB despite decades of control strategies
- Estimated expenditure for GB was £152 million in 2010/2011

(Abernethy et al. 2013)

Host genetic variance

- Genetic component to cattle resistance to bTB
 - Heritability = 0.11 0.23

Genomic studies

Association studies for bTB resistance in cattle

Study objective

To identify genomic regions associated with bTB resistance in British dairy cattle using single SNP and regional heritability mapping analyses

Phenotypes

dEBVs of 804 Holstein Friesian bulls and based on 3 trait definitions

- skin test reactors with positive post-mortem/confirmed cases (RP)
- skin test reactors regardless of post-mortem (R)
- skin test reactors plus negative reactors with positive postmortem results (RNP)

	Trait	Ν	Mean dEBVs	Mean reliability	Min.	Max.	The Start
	RP	764	0.38	0.69	-7.72	7.84	-
	R	784	0.44	0.74	-8.83	13.01	
NNIVE CONSTRUCTION	RNP	784	0.47	0.74	-9.02	13.50	

Genotypes

56,134 SNPs

Quality control

- MAF (0.02)
- Ind. call rate (0.95)
- SNP call rate (0.95)
- HWE (1e-6)
- Post QC
 - 36,720 SNPs
 - No. of individuals: RP=759, R=779, RNP=779.

Single SNP association

Suggestive SNPS on chromosomes 2 and 24

Single SNP association

Suggestive SNP on chromosomes 23

Single SNP association

 SNPs on chromosomes 23 below suggestive threshold but same SNPs as in RS

Summary

ROSLN

- Lack of consistency in GWAS results
 - QTL regions identified differ from those previously reported
- GWAS and RHM analyses
 - Single SNP and RHM analyses found similar results
 - SNPs with moderate individual effects collectively have significant impact on bTB resistance

Summary

ROSLN

- Potential for use in breeding
 - Opportunity for exploration of candidate genes
 - Polygenic trait, genomic selection likely more effective than marker based selection
- **Future work**
 - Confirmation with independent data
 - Increase of power by including more observations

Acknowledgements

- S. Wilkinson (Roslin)
- L. Muhlbauer (Roslin)
- L. Seeker (SRUC)
- A. Psifidi (Roslin)
- J. Ilska-Warner (SRUC)
- T. Englishby (SRUC)
- T. Krzyzelewski (SRUC)
- A. Brown (SRUC)
 - O. Abejide (SRUC)

