

Whole genome association analysis of resistance / susceptibility to paratuberculosis in French Holstein and Normande cattle

Sanchez MP, Guatteo R, Davergne A, Grohs C, Capitan A, Blanquefort P, Delafosse A, Joly A, Ngwa-Mbot D, Biet F, Fourichon C, Boichard D

Paratuberculosis (MAP)

Paratuberculosis (MAP) or Johne's disease = endemic transmissible disease in ruminants due to Mycobacterium avium subsp. paratuberculosis (Map)

Gut lesions Rapid weight losses & diarrhea

Economic losses

Negative effects on animal welfare

Paratuberculosis (MAP)

Difficulties to control MAP because

- ✓ No efficient treatment available
- ✓ Young animals infected (<6 months) but **long latency period** before first symptoms (after 2-6 years)
- ✓ Tests to detect infected animals (ELISA on blood or PCR on faeces) have a **poor sensitivity** that can be compensated by repeated testing

A better **genetic resistance** could contribute to control the disease

French PICSAR & PARADIGM projects

2 related on-going projects on integrated control of MAP

PICSAR

INRA

PARADIGM

APIS-GENE and GDS France

Preliminary results

Genomic analysis in cattle

Objectives

Genomic study of confirmed host phenotypes to identify genomic regions (QTL) affecting susceptibility to MAP

in two dairy cattle breeds

Holstein

Normande

- → Better understand the genetic determinism of the susceptibility to MAP
- → Build a first reference population to pave the way for genomic selection against the disease

Material & methods: accurate phenotypes

Herds with detected cases enrolled in surveillance program

regular blood ELISA + fecal PCR tests

Selection of cows in these herds

- With 2 ELISA & 2 PCR tests distant from > 8 months and
- 2) With **clear** and **concordant** negative or positive results, excluding intermediate ones

	Negative	Intel		Positive
ELISA IDDEX S/P	< 45			≥ 45
PCR ADIAGENE Ct	≥ 40	? Ct	9	≤ 35

3) Controls are negative cows at least 72 months old and born in the same herd and in the same time period as affected cows

Material & methods: accurate phenotypes

Selection of cows in these herds

Cows with uncertain phenotypes removed

Additional analyses
to confirm phenotypes
1 ELISA & 1 PCR test

Cows with discordant phenotypes removed

747 CONTROLS 195 Normande 552 Holstein

Material & methods: genotypes

All the **1,394** cows with phenotypes genotyped with the 50k Beadchip with about 40,000 informative genetic markers distributed over the 29 autosomes (BTA)

405 Normande NOR

989 Holstein **HOL**

~ 60% of the total targeted population in the project

Material & methods: case-control GWAS

Within breed case-control GWAS (Genome Wide Association Study) with GCTA software (Yang et al., 2011)

Each genetic marker tested **one by one**MAF (Minor Allele Frequency) > 5%

Structure of the population accounted for through a polygenic effect of animals, in order to avoid spurious associations

Estimated with a Genomic Relationship Matrix calculated with the markers of the 50K Beadchip

Results: h² of resistance to MAP

Heritability h²

$$h^2 = 60\%$$

Higher than expected ~30% => probably due to selection of phenotypes (elimination of intermediate phenotypes)

Nevertheless, **genetic variation** of susceptibility to MAP appears to be **large**

Results: GWAS in Normande

Manhattan Plot at the genome level

Normande = Q-Q plot of GWAS p-values

Results: GWAS in Holstein

Manhattan Plot at the genome level

Holstein = Q-Q plot of GWAS p-values

GWAS results: the most significant QTL

Manhattan Plot on one chromosome

The most significant QTL is located at 70Mb in HOL (p-value = 2.10^{-8})

GWAS results: a QTL shared between

breeds

A QTL found in both breeds located at 27Mb in the MHC region $(4.10^{-6} < p\text{-value} < 4.10^{-5})$

→ 1 QTL at 27 Mb in Jersey (Zare et al., 2014)

GWAS results: QTL previously described

GWAS results: QTL newly described

Conclusions

Large genetic variability of susceptibility to MAP

Identification of **numerous QTL** in Normande and Holstein dairy cattle with high or moderate significant effects on **susceptibility to MAP**

11 QTL in HOL

6 QTL in NOR

Only one shared between breeds (but detection power higher in HOL / NOR)

7 NEW QTL

Perspectives

This study was funded by INRA (GISA), APIS-GENE, and GDS France and carried out with the farmers and GDS (Groupements de Défense Sanitaire)

Thank you for your attention

