

# Unravelling the Contribution of Host Genetics to Infectious Disease Outbreaks in Livestock Populations

**Andrea Doeschl-Wilson** 





# **Hypotheses**



- Host genetics has a huge influence on infectious disease spread
- We are currently NOT capturing ALL of the host genetic variation in infectious disease data







### **Outline**



- 1. Why don't we capture all genetic variation in infectious disease data?
  - What does it take to correct this?
- 2. An example from fish data
- A new statistical method to estimate genetic parameters for host susceptibility & infectivity from outbreak data
- 4. Potential application to cattle













#### **Reduce Prevalence**

Improve host Resistance:

Ability to restrict pathogen reproduction

Reduce host Infectivity:

Ability to transmit the infection

#### **Reduce Impact**

Improve host Tolerance:

Ability to limit impact of infection on health or fitness









## Reduce Prevalence

 Improve host Resistance:

Ability to restrict pathogen reproduct

 Reduce host Infectivity:

Ability to transmit the infection

## **Mitigate Impact**

Improve host

## **Tolerance:**

of infection on health or rformance

related to Resilience



All host traits may harbour genetic variation & may be related: "Tolerant superspreader"



#### How to measure Resistance



- Did it become infected?
  - Binary infection status (infected / not infected)
- When did it become infected?
  - > Time of infection
- How severe is the infection?
  - Pathogen load
  - > Immune response



Much known about genetic resistance





## How to measure Tolerance



- Did the host survive the infection?
  - > Time to death
  - Requires knowledge of presence of infection
  - Only suitable for infections that kill

 How did host performance change with increasing pathogen burden?

> Reaction norms

See presentation by G. Lough Session 31, Tuesday 16.45pm



Relatively little known about tolerance genetics







# How to measure Infectivity



#### Infectivity is an indirect genetic effect (IGE):

Individual's genes affect the (disease) phenotype of group members

- Requires measurement of infection status of contact individuals
- Difficult to capture with current genetic models



Nothing known about infectivity genetics









# How to infer differences in infectivity?







# **Application:** Scuticociliatosis in Turbot





- Infectious disease caused by protozoa Philisterides Dicentrarchi
- Symptoms: Colour change, skin lesions ... death
  - Unique model for disentangling resistance / tolerance / infectivity







# **Transmission experiment**



Carefully designed transmission experiment to determine genetic (co-)regulation of resistance, tolerance & infectivity

- 1800 recipient fish from 60 families
- Distributed (optimally) into 72 tanks (25 fish / tank); 2 trials
- Epidemics seeded by infected donor fish from one of 8 families
- Daily measurements of infection status of each individual; genotypes







#### **Trait definitions & data**



#### RESILIANCE

Ability to survive after exposure Time (days) to death

#### RESISTANCE

Ability to avoid infection
Time (days) to onset of first symptoms



Ability to survive despite being infected
Time (days) from onset of first symptoms to time to death

#### INFECTIVITY

Ability to transmit infection

Time (days) to onset of first symptoms of tank mates







# Kaplan Meier survival / infection curves for recipient families



- High variation in recipient family resistance
- Variation in tolerance much smaller
- Most variation in resilience explained by variation in resistance





# **Genetic analysis – proportional hazard models**







|              | Resilience | Resistance | Tolerance |
|--------------|------------|------------|-----------|
| Genetic var  | 0.09       | 0.14       | 0.11      |
|              |            |            |           |
| Heritability | 0.04       | 0.08       | 0.09      |



# Genetic analysis – proportional hazard models







|              | Resilience | Resistance | Tolerance |
|--------------|------------|------------|-----------|
| Genetic var  | 0.09       | 0.14       | 0.11      |
| Tank var.    | 0.58       | 0.65       | 0.0001    |
| Heritability | 0.04       | 0.08       | 0.09      |





# Genetic analysis – proportional hazard models





- (Genetic) Variation in infectivity is fully absorbed in tank effects
- Are we missing an important host genetic component affecting disease prevalence?

|              | Resilience | Resistance | Tolerance |
|--------------|------------|------------|-----------|
| Genetic var  | 0.09       | 0.14       | 0.11      |
| Tank var.    | 0.58       | 0.65       | 0.0001    |
| Heritability | 0.04       | 0.08       | 0.09      |



# First evidence for genetic variation in infectivity PROS



Does infection spread equally fast for each donor family?



Significant difference in recipient infection profiles between the 4 donor families would indicate genetic variation in infectivity



# First evidence for genetic variation in infectivity PROSLIN



- > Significant difference in infectivity between donor families
- But how to account for differences in recipients' infectivity?
- How to apply these principles to field data?



# Estimating genetic susceptibility & infectivity for natural disease outbreaks

#### Dynamic non-linear Indirect Genetics Effects method (DnIGE)

#### What is it?

- A Bayesian computational method that estimates genetic parameters for susceptibility & infectivity from disease outbreak data
  - Embeds principles from epidemiological models
  - Incorporates genetic variation in host susceptibility
     & infectivity
    - Assumes that susceptibility & infectivity are controlled by many genes (polygenic effects)



rate of infection of animal 1 at time t

$$\lambda_1(t) = \underbrace{g_1}_{\substack{\text{susceptibility of animals 1}}} \times \underbrace{\beta}_{\substack{\text{mean transmission rate}}} \times \underbrace{\sum f_k I_k(t)}_{\substack{\text{infectivity of animals infected before } t_j}}$$



# Estimating genetic susceptibility & infectivity for natural disease outbreaks

#### Dynamic non-linear Indirect Genetics Effects method (DnIGE)



# Good prediction accuracies for genetic risk for susceptibility & infectivity



Estimating genetic risk for infectivity is more difficult than for susceptibility, but possible



# How often do we need to sample?



N=2000, 100 sires, 20 dams/sire, group size 10,  $h^2 = 0.8$  (10 replicates)



Estimating infectivity BVs requires repeated measurements

Reasonable predictions even for low sampling frequencies



# Potential applications in cattle



#### **Bovine Tuberculosis & mastitis**

#### Relevant?

- Devastating effects on cattle industry
- Much known about genetics underlying disease resistance & some understanding about tolerance (see talks in this session)
- Evidence for variation in infectivity supers-spreaders!
- Are genetically more resistant / tolerance animals also less infectious?

#### Feasible?

Large datasets with appropriate populations structure and required genetic & epidemiological information



#### Conclusion



#### **Opportunities:**

- 1. Much scope for genetic disease control
- 2. Make better use of epidemiological data
  - Consider more traits that harbour genetic variation (e.g. tolerance, infectivity)
  - Utilize epidemiological models and latest Bayesian inference methods to obtain
- > Better estimates of underlying genetic effects
- More effective selection





# Acknowledgements







#### Validation with simulated data





2000 half-sibs (100 sires x 20 dams)

- Distributed randomly into closed groups of equal size
- No between group transmission
- Each epidemic starts with1 (randomly) infected individual
- Individual infection status recorded at regular sampling times





# Estimating genetic susceptibility & infectivity for natural disease outbreaks

#### Dynamic non-linear Indirect Genetics Effects method (DnIGE)

#### What data does it require?

- Repeated measures of binary infection status (infected / not infected) of individuals during a disease outbreak
- From related individuals spread across different outbreak herds





