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• Host genetics has a huge influence 
on infectious disease spread

• We are currently NOT capturing 
ALL of the host genetic variation 
in infectious disease data

Hypotheses



1. Why don’t we capture all genetic variation 
in infectious disease data?
– What does it take to correct this?

2. An example from fish data
3. A new statistical method to estimate 

genetic parameters for host susceptibility 
& infectivity from outbreak data

4. Potential application to cattle

Outline



Reduce Prevalence
• Improve host 

Resistance:
Ability to restrict 
pathogen reproduction

• Reduce host 
Infectivity:
Ability to transmit the 
infection

Reduce Impact
• Improve host 

Tolerance:
Ability to limit impact 
of infection on health or 
fitness

Breeding goals for combatting infectious disease



All host traits may harbour genetic variation & 
may be related: “Tolerant superspreader”

Reduce Prevalence Mitigate Impact
• Improve host 

Resistance:
Ability to restrict 
pathogen reproduction

• Reduce host 
Infectivity:
Ability to transmit the 
infection

• Improve host 
Tolerance:
Ability to limit impact 
of infection on health or 
performance
- related to Resilience

Breeding goals for combatting infectious disease



• Did it become infected?
 Binary infection status (infected / not infected)

• When did it become infected?
 Time of infection

• How severe is the infection?
Pathogen load
 Immune response

Much known about 
genetic resistance

How to measure Resistance



• Did the host survive the infection?
 Time to death
 Requires knowledge of presence of infection
 Only suitable for infections that kill

• How did host performance change with 
increasing pathogen burden?
Reaction norms

Relatively little 
known about 
tolerance genetics

See presentation by G. Lough 
Session 31, Tuesday 16.45pm

How to measure Tolerance



Nothing known 
about infectivity 
genetics

Infectivity is an indirect genetic effect (IGE): 
Individual’s genes affect the (disease) phenotype of 
group members

• Requires measurement of infection status of contact 
individuals 

• Difficult to capture with current genetic models

Lipschutz-Powell et al. PLoS ONE 2012; Front. Gene. 2012; Anche et al. (Heredity 2014) 

How to measure Infectivity
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How to infer differences in infectivity?

Low 
infectivity

Medium
infectivity

T0T=0 T1 Tk TF

A A R2A

B
R2

BB

C C C



• Infectious disease caused by protozoa    
Philisterides Dicentrarchi

• Symptoms: Colour change, skin lesions … death

 Unique model for disentangling resistance / 
tolerance / infectivity

Application: Scuticociliatosis in Turbot



• 1800 recipient fish from 60 families
• Distributed (optimally) into 72 tanks 

(25 fish / tank); 2 trials
• Epidemics seeded by infected 

donor fish from one of 8 families
• Daily measurements of infection 

status of each individual; genotypes 

Transmission experiment

R13

R14

R16

R19
D4

Carefully designed transmission experiment to determine 
genetic (co-)regulation of resistance, tolerance & infectivity



RESISTANCE
Ability to avoid infection
Time (days) to onset of first symptoms

TOLERANCE
Ability to survive despite being infected
Time (days) from onset of first symptoms to time to death

Trait definitions & data

INFECTIVITY
Ability to transmit infection
Time (days) to onset of first symptoms of tank mates

RESILIANCE

Time (days) to death
Ability to survive after exposure

Resistance
Infectivity Tolerance

Resilience



Resilience

Kaplan Meier survival / infection curves for recipient families 

• High variation in recipient family resistance
• Variation in tolerance much smaller
• Most variation in resilience explained by variation in resistance

Resilience
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Genetic analysis – proportional hazard models

Resilience Resistance Tolerance
Genetic var 0.09 0.14 0.11

Heritability 0.04 0.08 0.09



Resilience
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Resilience Resistance Tolerance
Genetic var 0.09 0.14 0.11
Tank var. 0.58 0.65 0.0001
Heritability 0.04 0.08 0.09

Genetic analysis – proportional hazard models



Resilience
Resilience

Resistance Tolerance 

Tolerance
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Resilience Resistance Tolerance
Genetic var 0.09 0.14 0.11
Tank var. 0.58 0.65 0.0001
Heritability 0.04 0.08 0.09

• (Genetic) Variation in infectivity is fully absorbed in tank effects

• Are we missing an important host genetic component affecting 
disease prevalence? 

Genetic analysis – proportional hazard models



 Significant difference in recipient infection profiles between the 
4 donor families would indicate genetic variation in infectivity

Does infection spread equally 
fast for each donor family?

4 donor families
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First evidence for genetic variation in infectivity



 Significant difference in infectivity between donor families
 But how to account for differences in recipients’ infectivity?
 How to apply these principles to field data?
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First evidence for genetic variation in infectivity



What is it?
• A Bayesian computational method that estimates 

genetic parameters for susceptibility & infectivity 
from disease outbreak data
– Embeds principles from epidemiological models
– Incorporates genetic variation in host susceptibility 

& infectivity 
• Assumes that susceptibility & infectivity are controlled by 

many genes (polygenic effects)

Estimating genetic susceptibility & infectivity for 
natural disease outbreaks

Anacleto et al. Genetics, 2015 

Dynamic non-linear Indirect Genetics Effects method (DnIGE)



Dynamic non-linear Indirect Genetics Effects method (DnIGE)
How does it work?

Genetic model

Epidemiological model

Data augmentation

Anacleto et al. Genetics, 2015 

Estimating genetic susceptibility & infectivity 
for natural disease outbreaks

Demographic information



Good prediction accuracies for genetic risk for 
susceptibility & infectivity

Estimating genetic risk for infectivity is more difficult than for susceptibility, 
but possible

Anacleto et al. Genetics, 2015 

Susceptibility
Infectivity

Prediction accuracies



How often do we need to sample?

Estimating infectivity BVs requires repeated measurements

Reasonable predictions even for low sampling frequencies
Anacleto et al. Genetics, 2015 



Potential applications in cattle

Relevant?
• Devastating effects on cattle industry
• Much known about genetics underlying disease resistance & 

some understanding about tolerance (see talks in this session)
• Evidence for variation in infectivity – supers-spreaders! 
• Are genetically more resistant / tolerance animals also less 

infectious?

Feasible?
• Large datasets with appropriate populations structure and 

required genetic & epidemiological information

Bovine Tuberculosis & mastitis



Conclusion

Opportunities:
1. Much scope for genetic disease control
2. Make better use of epidemiological data

– Consider more traits that harbour genetic variation (e.g. 
tolerance, infectivity)

– Utilize epidemiological models and latest Bayesian 
inference methods to obtain

Better estimates of underlying genetic effects 
More effective selection



Acknowledgements

Roslin Colleagues
• Doeschl-Wilson group

– O. Anacleto, G. Lough, S. Tsairidou
• S.Bishop, J. Woolliams, 
• R. Houston, A. Archibald

External
• M. Saura, B. Villanueva,  M. Carabano, A. Garcia-Cortes (INIA, Spain)
• S. Cabaleiro (Cetga, Spain)
• P. Bijma, H. Mulder (WUR)



Validation with simulated data

Indirect

Infectivity
Transmission 

rate

2000 half-sibs (100 sires x 20 dams) 
• Distributed randomly into closed groups of equal size
• No between group transmission
• Each epidemic starts with1 (randomly) infected individual
• Individual infection status recorded at regular sampling times

Stochastic 
epidemiological
SI model



What data does it require?
– Repeated measures of binary infection status (infected / not 

infected) of individuals during a disease outbreak
– From related individuals spread across different outbreak herds 

Estimating genetic susceptibility & infectivity 
for natural disease outbreaks

Dynamic non-linear Indirect Genetics Effects method (DnIGE)


