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Breeding against Infectious Disease

 Current approach: eZaXby 

Connect disease status 
to own breeding value

Captures genetic variation 
in host susceptibility only

 Overall objective: Reduce prevalence

● Prevalence = fraction of the population infected

 We miss part of the genetic variation: Host Infectivity

Infectivity = propensity to infect others



Traits affecting prevalence

• R0: Basic reproduction ratio
• R0 = “Number of new cases due to a case” 

• Anche et al. 2012: yinfectivitlitysusceptibi0  cR

Reduce prevalence  we should also consider infectivity

• R0 determines prevalence
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Objective
 Develop methods to estimate single gene-effects 

on susceptibility and infectivity

 Challenges:

● Infectivity: 

● 0/1 trait (disease status)
● Generalized linear models

● Time dynamics
● Time-series data



 Endemic disease

 SIS-model

● Susceptible – Infected - Susceptible

 Genetic model
● 2 loci, each with 2 alleles 

● Susceptibility locus; alleles g and G
● Three genotypes: gg, gG, GG 

● Infectivity locus; alleles f and F
● Three genotypes: ff, fF, FF 

Epidemiological & Genetic Model
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 Simulated data

● 10 herds of ~100 individuals

● Within-herd endemics

● 11 observation moments per herds

● Time series data on disease status (0/1 = S/I)

Simulated data
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Simulated time-series data
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Data

 Disease status of each individual at each time point (0/1 = S/I)

● Which susceptibles have become infected 

● Which infecteds (may) have done it 

 Genotyped individuals

 Length of the time interval
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Methods

 Binary data from a Poisson process 

● GLM with complementary log-log link function

 Transmission probability depends on:

● Overall average transmission rate (c)

● Susceptibility genotype of the (focal) individual

● Number of infectious herd-mates at time t

● Infectivity genotype of those herd mates 9

t t+1
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1Model the probability of transmission in a time interval: P(SI)



Results: Generalized Linear Model

GLM with complementary log-log link-function
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Results: Generalized Linear Model

Expected number of cases for each susceptibility genotype, in 
the interval t  t+1
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Susceptibility genotype of susceptibles at time t

= Allele count (0, 1, or 2) 

Results: Generalized Linear Model
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Results: Generalized Linear Model
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Infectivitity genotype of infectious herd mates at time t

= Average allele count of those herd mates



Results: Generalized Linear Model
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Offset

● Fraction of herd mates infected at time t

● Length of the time interval



Results: Generalized Linear Model
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Solutions: 210 ˆ,ˆ,ˆ ccc

Estimates of interest:

Susceptibility effect G-allele = 

Infectivity effect F-allele =

1ĉe
2ĉe



Results: Estimates (at optimum recording interval)
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Results: effect recording interval
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For a fixed total number of recordings 

Optimum



Conclusions

 Generalized LM for GWAS

● Susceptibility estimates are unbiased

● Infectivity estimates tend to be biased downwards (conservative)

● Optimum recording interval ~1/3 of infectious period

 Ongoing

● Application to digital dermatitis in dairy cattle (Mortellaro’s disease)

 Extensions

● Mixed models and Genomic Prediction

 Alternatives: Bayesian models (Anacleto et al. 2015)
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