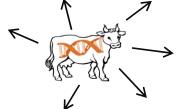

Breeding against Infectious Disease

Estimating Gene Effects on Susceptibility and Infectivity


Breeding against Infectious Disease

- Overall objective: Reduce prevalence
 - Prevalence = fraction of the population infected

We miss part of the genetic variation: Host Infectivity

Infectivity = propensity to infect others

Traits affecting prevalence

0.2

0.0 +

2

4

6

 R_0

10

• R₀ determines prevalence

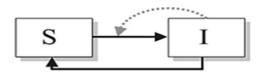
- R₀ = "Number of new cases due to a case"
- Anche *et al.* 2012: $R_0 = c \times \overline{\text{susceptibility}} \times \overline{\text{infectivity}}$

Reduce prevalence \rightarrow we should also consider infectivity

Objective

Develop methods to estimate single gene-effects on susceptibility and infectivity

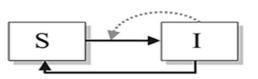
Challenges:

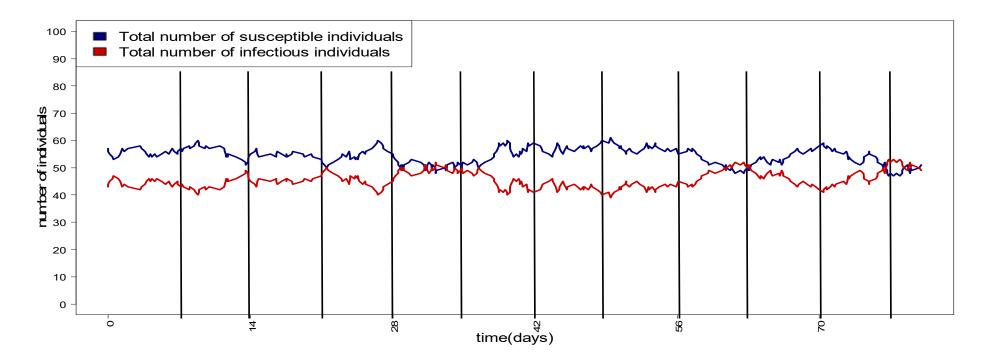

• Infectivity:

- 0/1 trait (disease status)
 - Generalized linear models
- Time dynamics
 - Time-series data

Epidemiological & Genetic Model

- Endemic disease
- SIS-model
 - Susceptible Infected Susceptible
- Genetic model
 - 2 loci, each with 2 alleles
 - Susceptibility locus; alleles g and G
 - Three genotypes: gg, gG, GG
 - Infectivity locus; alleles **f** and F
 - Three genotypes: ff, fF, FF




Simulated data

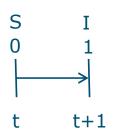
Simulated data

- 10 herds of ~100 individuals
- Within-herd endemics
- 11 observation moments per herds
 - Time series data on disease status (0/1 = S/I)

Simulated time-series data

Individual disease status (0/1) recorded at each time point

Data


• Disease status of each individual at each time point (0/1 = S/I)

- Which susceptibles have become infected
- Which infecteds (may) have done it
- Genotyped individuals
- Length of the time interval

Methods

Model the probability of transmission in a time interval: $P(S \rightarrow I)$

- Binary data from a Poisson process
 - GLM with complementary log-log link function
- Transmission probability depends on:
 - Overall average transmission rate (c)
 - Susceptibility genotype of the (focal) individual
 - Number of infectious herd-mates at time t
 - Infectivity genotype of those herd mates

$$cloglog\left(\varepsilon\left(\frac{c}{s}\right)\right) = c_0 + c_1 * IndexG + c_2 * fractionF + log\left(\left(\frac{l_{tot}}{N}\right) * \Delta t\right)$$

GLM with complementary log-log link-function

$$cloglog\left(\varepsilon\left(\frac{c}{s}\right)\right) = c_0 + c_1 * IndexG + c_2 * fractionF + log\left(\left(\frac{l_{tot}}{N}\right) * \Delta t\right)$$

Expected number of cases for each susceptibility genotype, in the interval t \rightarrow t+1

$$cloglog\left(\varepsilon\left(\frac{c}{s}\right)\right) = c_0 + c_1 * IndexG + c_2 * fractionF + log\left(\left(\frac{I_{tot}}{N}\right) * \Delta t\right)$$

Susceptibility genotype of susceptibles at time t
= Allele count (0, 1, or 2)

$$cloglog\left(\varepsilon\left(\frac{c}{s}\right)\right) = c_0 + c_1 * IndexG + c_2 * fractionF + log\left(\left(\frac{l_{tot}}{N}\right) * \Delta t\right)$$

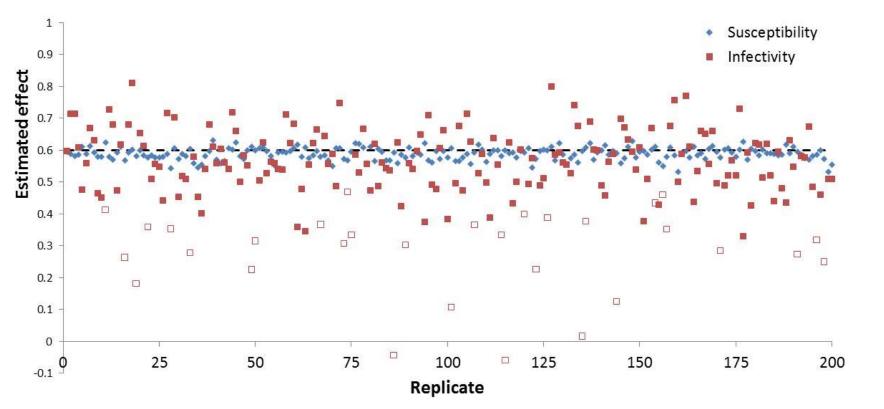
Infectivitity genotype of infectious herd mates at time t

= Average allele count of those herd mates

$$cloglog\left(\varepsilon\left(\frac{c}{s}\right)\right) = c_0 + c_1 * IndexG + c_2 * fractionF + log\left(\left(\frac{l_{tot}}{N}\right) * \Delta t\right)$$

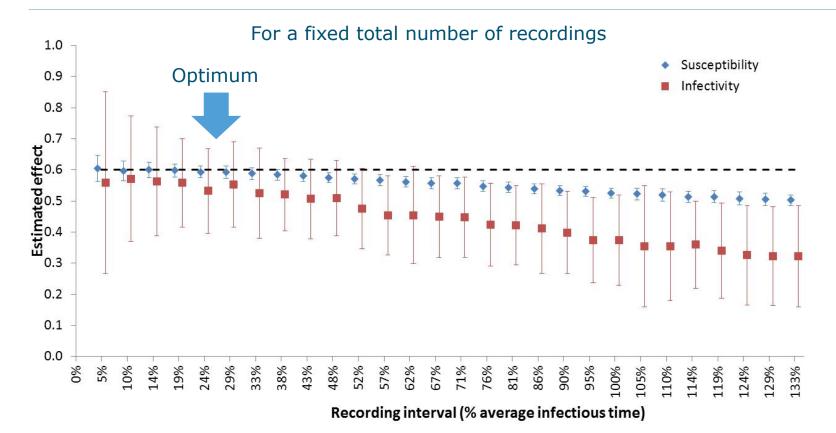
Offset
• Fraction of herd mates infected at time t

• Length of the **time** interval


$$cloglog\left(\varepsilon\left(\frac{c}{s}\right)\right) = c_0 + c_1 * IndexG + c_2 * fractionF + log\left(\left(\frac{I_{tot}}{N}\right) * \Delta t\right)$$

Solutions: \hat{c}_0 , \hat{c}_1 , \hat{c}_2

Estimates of interest:


Susceptibility effect G-allele = $e^{\hat{c}_1}$ Infectivity effect F-allele = $e^{\hat{c}_2}$

Results: Estimates (at optimum recording interval)

16

Results: effect recording interval

Conclusions

Generalized LM for GWAS

your attention!

- Susceptibility estimates are unbiased
- Infectivity estimates tend to be biased downwards (conservative)
- Optimum recording interval ~1/3 of infectious period
- Ongoing
 - Application to digital dermatitis in dairy cattle (Mortellaro's disease)
- Extensions
 - Mixed models and Genomic Prediction
- Alternatives: Bayesian models (Anacleto *et al.* 2015)

Floor Biemans