

Challenges and new developments in nutrient use efficiency: land and manure management

Dr Debbie McConnell

Debbie.mcconnell@ahdb.org.uk

Drivers for improved nutrient use efficiency

Drivers for improved nutrient use efficiency

Increasing demand on land to support a growing population

Drivers for improved nutrient use efficiency

Inputs of N and P supported improvements in agricultural productivity

Drivers for improved nutrient use efficiency: Environmental

Assessing and Managing Agricultural Nitrogen Losses to the Environment

S. J. Smith, J. S. Schepers, L. K. Porter

doi:10.2134/jeq1998.00472425002700020004x

The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review

David L. Correll *

Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices

DAVID TILMAN

Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options

Andrew N. Sharpley *, S. C. Chapra, R. Wedepohl, J. T. Sims, T. C. Daniel and K. R. Reddy

Challenge: Increasing awareness of agricultural impacts on the environment alongside concerns over long term security of global fertiliser supply

Drivers to improve nutrient use efficiency: Land management

Challenge: No longer managing land solely for agricultural production

Drivers to improve nutrient use efficiency: Legislative

From 1990 increasing number of measures across Europe aimed at improving water quality:

- Nitrates Directive 1991
- Drinking Water Directive 1998
- Water Framework Directive 2000
- Nitrates Action Programme 2005+
- COGAP and QA incentives

Challenge: Increasing regulatory mechanisms aimed at improving nutrient use efficiency

The Telegraph

ner Johann Huber presents his cows Ami (left) and Doris, in a diaper, in Gmund am Tegnersee, Germany Pr

Drivers to improve nutrient use efficiency: Social

free diet

Challenge: Greater public demand for environmentally conscious food production

Drivers to improve nutrient use efficiency: Economic

Fertiliser price index trends 2010 = 100 base

Challenge: Increasing volatility in fertiliser prices placing pressure on farm profitability

Trends in nutrient management on grassland farms in GB

57% of grassland soils below pH 6.0

Only 9% of soils at target for P and K

	1 macx		
K Index	<target< th=""><th>target</th><th>>target</th></target<>	target	>target
<target< td=""><td>19</td><td>13</td><td>9</td></target<>	19	13	9
target	10	9	9
>target	7	10	15

P Indev

Challenge: Messages on good nutrient management haven't changed but there remains a lack of uptake on farm

Trends in nutrient management on grassland farms in GB

"Fertiliser Manual (RB209)" N fertiliser recommendation (kg/ha)

Challenge: Messages on good nutrient management haven't changed but there remains a lack of uptake on farm

Challenges

 Greater fluxes of N and P in agriculture – negative effects on environment

 Increased legislative and societal pressure to improve nutrient use efficiency

 Increasing volatility in input prices and concerns over long term fertiliser reserves

Opportunities

Using the latest R&D and technology

Knowledge exchange opportunities
1. Soil
2. Nutrient

Opportunities

Using the latest R&D and technology

Knowledge exchange opportunities
1. Soil
2. Nutrient

Breeding programmes – nutrient efficient forages

- Breeding programme to improve NUE and PUE in grass-clover swards
- Clovers from low P environments can improve yields of grass + clover under 0 P fertilisation

Opportunity: Further integration of nutrient efficiency traits into breeding programmes

Technology development – grassland productivity

Within field variation in grass dry matter (DM) in a grassland silage field

	DM yield t/ha	
	Mean	Range
First cut silage	3.7	1.1 – 6.3
Second cut silage	4.1	2.3 - 5.4
Third cut silage	2.4	1.1 - 4.0
Total yield	10.2	6.8 – 13.2

Opportunity: Development of technology for measurement of grass biomass and nutrient offtake

Technology development – nutrient distribution across grassland

Opportunity: Development of variable rate application technology for grassland

Technology development - nitrogen sensors

- Development of sensor capacity for better measure of:
 - Growth patterns
 - Nutrient uptake
- Need to address:
 - Spatial variability across fields
 - Robustness of sensors
 - Cost-benefit

Opportunity: Development of sensors and decision support tools to optimise timing and uptake of nutrients

Technology uptake – manure application

Improved N recovery

Opportunity: Low emission slurry spreading techniques reduce nutrient loss and improve nutrient use efficiencies

Opportunities

Using the latest R&D and technology

Knowledge exchange opportunities
1. Soil
2. Nutrient

Knowledge exchange - Soil

- 70% of grassland soils exhibiting signs of compaction in England and Wales
- Yield losses of 20 30% caused by compaction from animal treading and machinery traffic
- Also impacts on nutrient use efficiency

Knowledge exchange - Soil

	Nitrous oxide flux (g/ha)
No compaction	89.3
Tractor	122.1
Animal	96.7

Improving soil structure reduces gaseous N losses and increases N recovery

Knowledge exchange - Soil

Based on the VESS method of soil structure assessment (www.sruc.ac.uk/vess)
See Healthy Grassland Soil Pockerbook for more information. It is available at www.healthygrasslandsoils.com

Knowledge exchange – Improving forage efficiency

Wide range in concentrate input and milk from forage across farms in N.I.

Knowledge exchange – improving forage efficiency

	Calculated P balance on benchmarked dairy farms (kg P per ha)	
Yield (litres per cow per annum)	Most efficient	Least efficient
6000 – 7000	3.6	12.6
7000 – 8000	6.4	16.5
8000 – 9000	9.0	17.9
9000 - 10000	12.7	19.8

Opportunity: Better utilisation of forage improves P use efficiency, regardless of system

Knowledge exchange – Nutrient management

Norway: Land management DST to determine risk of P loss

Netherlands: Phosphorus efficiency benchmarking tools

	P efficiency (%)
My farm:	
Current	26.5
Increased grazing	33.7
Other farms:	
In my region	29
Similar system	32
2013 target	31

Opportunity: Sharing of decision support tools and expertise across European countries

Summary

- Considerable societal and policy pressure to improve nutrient efficiency in livestock production systems.
- Need to use breadth of tools in armoury to improve NUE on farms – simple nutrient management messages (back to basics) to cutting edge technology.
- Greater sharing of research findings and knowledge transfer expertise across European countries is key.

