The Role of "Dilution & Reduction of Maintenance" in Reducing Animal Production's Environmental Footprint

29 Aug 2016 Roger Cady, Global Sustainability Lead EAAP Meetings, Belfast, Ireland

My Why

The Challenge

 Meeting a 60% forecast increase in dairy demand

 Without increasing the environmental footprint of milk production

Source: World Livestock Report 2011: Livestock in food security. FAO, Rome, 2011. pgs 11-12, 79

U.S. Supply Chain GHG Emissions for Fluid Milk (2007 – 2008)

Source: Dairy Innovation Center Report, Greenhouse Gas Emissions of the United State, University of Arkansas, 2010 http://www.usdairy.com/~/media/usd/private/ghgreductionchart4-30-10.pdf.pdf

Figure 4.1. Estimated GHG emissions per kg of FPCM* at farm gate, averaged by main regions and the world

^{*} Note: FPCM = Fat-Protein Corrected Milk
Source: Vellinga, T., et al. 2010. Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment, FAO Report, pg 35

The Problem: Global milk supply is increasing primarily by adding production animals

Impact of Adding More Cows

GHG Maintenance Footprint of One Additional Cow

- +8.7 to 12.8 MT/yr
- Highly dependent on cow size
- Includes GHG footprint of support population
 - Replacement heifers
 - Bulls

Source: FAOSTAT, accessed 9JUL14

Source: 2012, Capper, J.L. & R.A. Cady, J. Dairy Sci.

Question: Which vehicle will be the most environmentally responsible to use?

Task: Transport 48 people 640 km

Holds 48 Passengers

Fuel Efficiency: 2 km/l

vehicles: 1

Energy use: 320 ℓ fuel

People distance: 30,720 pkm

People km/ℓ: 96 pkm/ℓ

Holds 4 Passengers

Fuel Efficiency: 16 km/ℓ

vehicles: 12

Energy use: 480 ℓ fuel

People distance: 30,720 pkm

People km/ ℓ : 64 pkm/ ℓ

Question: Which vehicle will be the most environmentally responsible to use?

Task: Transport 4 people 640 km

Holds 48 Passengers

Fuel Efficiency: 2 km/l

vehicles: 1

Energy use: 320 ℓ fuel

People distance: 2,560 pkm

People km/ ℓ : 8 pkm/ ℓ

Fuel Efficiency: 16 km/l # vehicles: 1

Energy use: 40 ℓ fuel

People distance: 2,560 pkm

People km/ ℓ : 64 pkm/ ℓ

Holds 4 Passengers

Functional Unit

Assessing Animal Production Impact

Animals are not machines

- Energy efficiency can be used as a proxy for environmental impact
- The mathematical functions remain the same
- Only the key metrics change

Dairy Example:

- Energy source: Fuel → Feed
- Task: Transporting people → producing milk
- Functional unit: People km/l → kg milk/kg feed or kg feed/kg milk

There is No Magic to the Biology: The Basics Are the Same the World Around

- Biology is obligated to follow the laws of physics
 - 1st Law of Thermodynamics "Conservation of Energy"
 - · A low input system cannot be a high output system
- Energy availability (measured as calories or joules) drives biological function
 - Carbon is the currency of energy in all higher order living beings
 - Exchange of carbon must occur for life to exist
 - There is no opportunity to change energy source ie. to solar, wind, etc.
 - Natural resource use and carbon footprint are all driven by the system's feed utilization rate (not just animal feed conversion)
- Metabolic hierarchy governs utilization of energy within animal kingdom
 - First priority given to maintenance (aka survival, an obligatory function)
 - Then to non-obligatory productive (lactation, reproduction, growth)

Nutrient Pathway Schematic

Positive Energy Balance

(Dietary intake meets all metabolic demands – excess leads to fat accretion)

Negative Energy Balance

(Dietary intake insufficient to meet all metabolic demands – energy reserves mobilized)

Dilution of Maintenance

- Definition: a reduction in the percentage of dietary intake required to meet maintenance energy requirements for healthy survival.
 - Corollary in financial world is the ability to spread fixed costs over more units of production
 - Not a reduction in feed intake
- History
 - Not a new concept
 - Discussed as early as 1917 in a nutrition physiology textbook by H. P. Armsby
 - Unable to attribute who originally coined the term but term was in common use by the 1970s

Three Biological Pathways to Reduce Environmental Impact of Animal Production

- Direct: Increase metabolic feed efficiency
- Indirect I: Dilution of animal maintenance
- Indirect II: Reduction of animal maintenance

Note: A specific technology may affect the environment through more than one pathway.

Dairy herd performance factors that affect environmental impact

Metabolic Efficiency	Dilution of Maintenance	Reduction of Maintenance
Feed digestibility	Milk yield	Physical activity level
Feed quality	Heifer growth rate	Animal size
Rumen biom (microflora)	Artificial insemination (genetics)	Cooling/ventilation
	Milk components	Morbidity
	Reproductive performance	Mortality
	Replacement program	System feed loss (shrink)
		No. dry days
		A.I. (No. bulls)

Three Biological Pathways to Reduce Environmental Impact of Animal Production

- Direct: Increase metabolic feed efficiency
- Indirect I: Dilution of animal maintenance
- Indirect II: Reduction of animal maintenance

Note: A specific technology may affect the environment through more than one pathway.

Dilution of Animal Maintenance:

Ability to consume and partition additional nutrients towards productive functions

1¹/₈ kg maintenance feed/liter milk 73% of feed for animal maintenance

64% of feed for animal maintenance

Relationship between total greenhouse gas emissions and milk output per cow [country basis]

Approximate effect of milk yield on feed efficiency (milking cow only)

Approximate effect of milk yield on feed efficiency (milking cow only)

Summary

- We cannot continue to add animals to meet growing protein demand
- Feed utilization is a key proxy for monitoring environmental impact trends
- Dilution of Maintenance provides a major avenue for reducing environmental footprint of animal source protein
- Does not negate need to:
 - Reduce waste
 - Avoid over-indulgence of animal protein
 - Protect animal health and welfare

Thank you!

