EFFICIENT & ECOLOGICALLY-FRIENDLY PIG AND POULTRY PRODUCTION.

A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY
AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

BASIC DATA

Funding:

EU-FP7

(€ 6 million)

Start date:

1 February 2013

Duration:

48 months (2013 to 2016)

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794

Holistic transcriptome-profiling of feed efficiency-divergent pigs

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794

Systemic processes of energy usage

Effects of FE on carcass composition and meat quality

➤ Population of 100 FE-tested German Landrace pigs

Trait	Low FE	Medium FE	High FE	p-value	
loin eye area	41.3 ± 1.2	44.1 ± 1.2	46.6 ± 1.2	0.0012	
fat area	15.2 ± 1.0	11.5 ± 1.0	11.6 ± 1.0	0.0038	
lean %	52.6 ± 0.8	56.8 ± 0.8	57.7 ± 0.8	<.0001	FE class associated with
back fat (total)	2.34 ± 0.07	2.07 ± 0.07	1.94 ± 0.07	<.0001	alterations of muscle/fat
back fat (1)	3.49 ± 0.1	3.22 ± 0.09	3.04 ± 0.1	0.0003	traits
back fat (2)	1.77 ± 0.07	1.54 ± 0.07	1.48 ± 0.07	0.0007	
back fat (3)	1.74 ± 0.11	1.49 ± 0.1	1.36 ± 0.1	0.0009	
pH _{45min}	6.39 ± 0.04	6.44 ± 0.04	6.36 ± 0.04	0.1257	
pH _{24h}	5.46 ± 0.07	5.55 ± 0.07	5.44 ± 0.07	0.5262	No significant association
L*	48.3 ± 0.6	49.1 ± 0.6	49.1 ± 0.6	0.1726	of FE groups with meat
a*	7.53 ± 0.22	7.21 ± 0.21	7.43 ± 0.22	0.2807	quality parameters
b*	1.16 ± 0.18	1.2 ± 0.17	1.08 ± 0.17	0.7423-	

Objectives

Dependence and interaction of different tissues in relation to feed efficiency

- → nutritional highly relevant tissues
 - small intestine (duodenum, jejunum, ileum)
 - liver (metabolism, protein synthesis, bile production)
- → regulatory tissues
 - hypothalamus (central control of feed intake)
- → responsive tissues
 - skeletal muscle (major consumer of energy)
 - adipose tissue (major storage of energy)

Overview of transcriptomic analysis

SNOWBALL porcine microarray

RNA-Seq on HiSeq2500

Pig - Transcriptome analysis

Experiment AFBI – focus on tissues of the gut-brain axis

Based on a population of 96 pigs, a subset of 12 pigs (~105kg) with high and low FE was selected (balanced for sex and pedigree)

Differentially abundant probe-sets (p<0.05, q<0.3):

	high FE >	low FE >
Tissue	low FE	high FE
Hypothalamus	46	32
Duodenum	25	37
Jejunum	56	30
Ileum	-	-
Liver	292	511

hierarchical make-up of FE at the transcriptional level

Transcriptome analysis of liver

Regulated pathways in liver tissue of high vs. low FE pigs:

- enrichment of differentially expressed genes in pathways related to:
 - −lipid metabolism → potential implications on muscle/fat ratio
 - cell communication and interaction \rightarrow efficient usage of cellular infrastructure

Bio-functions affected in liver

Gene	P-value (array)	P-value (qPCR)	Correlation (p-value)	Expression (FE)	Bio-function
NR1H4	<0.01	0.06	0.75 (<0.01)	H <l< td=""><td>Linid concentration</td></l<>	Linid concentration
SQLE	<0.01	<0.01	0.82 (<0.01)	H <l< td=""><td>Lipid concentration</td></l<>	Lipid concentration
SLC1A4	<0.01	<0.01	0.85 (<0.01)	H <l< td=""><td rowspan="2">Transport of molecules</td></l<>	Transport of molecules
SLC7A9	<0.01	0.02	0.87 (<0.01)	H>L	

Hub molecules in hypothalamus and small intestine

Hypothalamus:

- TEAD3 (p<0.01) transcription factor involved in T3-mediated regulations¹
- EHHADH (p<0.01) involved in peroxisomal oxidation of fatty acids

Small intestine

altered signalling within the gut-brain axis (CRH, dopamine)

potential hub molecules:

GUCY1A3, GUCY1B3 (both p<0.01) – nitric oxide receptors DIO1 (p<0.01) – deiodination of T4 to T3

Conclusion

- Transcriptional effects are cascaded and amplified throughout the organism from gut-brain axis to responsive tissues
- No consistent molecular alterations in all analysed tissues, but:
 - lipid metabolism pathways and bio-functions affected in liver
 - genes encoding for transporters are differentially abundant in liver
 - cell-to-cell signalling and interaction pathways enriched in liver and intestine
 - cross-talk between gut and brain influenced (NO, CRH, thyroid signalling)

Outlook - molecular mechanisms of FE

- Validation of the involvement of solute carriers and thyroid hormone signalling pathways in FE
- Regulated pathways of lipid metabolism
 - → Complement findings with fatty acid profiles
 - → Focus on muscle-fat ratio using RNA-Seq data of FE-divergent animals
- FE-related differences in energy metabolism
 - → Samples of pigs from respiratory chambers with measurements of heat production and gas emission
- Importance of host-microbe interactions
 - → Metagenomics combined with transcriptomics of ileum and caecum

Thank you for your attention!

