EFFICIENT & ECOLOGICALLY-FRIENDLY PIG AND POULTRY PRODUCTION.

A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

BASIC DATA

Funding:

EU-FP7

(€ 6 million)

Start date:

1 February 2013

Duration:

48 months (2013 to 2016)

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794

FEED EFFICIENCY RELATED GUT MICROBIOTA PROFILES VARY IN CHICKENS RAISED AT TWO LOCATIONS

S.-C. Siegerstetter,

R.M. Petri, E. Magowan, Q. Zebeli, P.G. Lawlor, B.U. Metzler-Zebeli

Intestinal microbiota

Gut microbiota influences

- digestion of food
- colonization resistance
- intestinal function
- development of immune system

- obesity in mice & humans (Ley et al. 2006; Turnbaugh et al. 2006)
- energy harvest in chickens (Singh et al. 2012, 2014; Stanley et al. 2012, 2013, 2016)

- competes for nutrients
- produces toxic amino acid catabolites
- decreases fat digestibility
- alters intestinal morphology & function

Genetic background Sex Age

Diet composition

Environment

Objectives

- To characterise and to better understand the gut microbiota of broiler chickens of diverging feed efficiency
- To better understand effects of the environment on gut microbiota and feed efficiency

Hypothesis

- The gut microbiota of broiler chickens of diverging residual feed intake (RFI) – as metric for feed efficiency – differs in key members
- Differences in gut microbiota are persistent between two different rearing environments

Experimental Design

- 2 identical trials at 2 different locations
 - Austria (University of Veterinary Medicine Vienna, VMU) & Northern Ireland (Agri-Food and Biosciences Institute, AFBI)
 - All conditions kept as constant as possible
- 3 batches with 52 / 64 (\bigcirc & \bigcirc) Cobb 500FF broiler chickens each
- Weighing monitored weekly, feed intake daily
- Selection of chickens on d36 (VMU) / d38 (AFBI) using RFI
- Top and bottom 10% considered as low and high RFI
 - ➤ 15 low RFI / 17 high RFI ♀
 - > 19 low RFI / 18 high RFI

AFBI

RFI values ⇒ similar in chickens of both locations

Within sex: a, b, c: *P*<0.05

Gut microbiota analysis

Gut microbiota analysis

Sample

DNA extraction

16S rRNA Illumina MiSeq sequencing

Bioinformatical analysis using **Qiime v 1.9.1**

- Classification in Operational Taxonomic Units (OTUs) at 97% similarity
- Threshold of 10 sequences per OTU
 - > 6,404 OTUs

Predictive functional profiling of microbial communities (KEGG* pathways) using **PICRUSt**

ANOVA using PROC MIXED (SAS v 9.3)

^{*}KEGG = Kyoto Encyclopedia of Genes and Genomes

Total bacterial 16S rRNA gene copies in low and high RFI chickens

Log₁₀ 16S rRNA gene copies/g ⇒ no RFI effect

⇒ no sex effect

⇒ no location effect

ECOFCE

Alpha diversity – Chao I index

Low RFI ⇒ higher species richnesss in faeces (VMU) Low RFI ⇒ lower species richness in caeca (AFBI)

Within gut site: *: *P*<0.05; +: *P*<0.1

■ low RFI

■ high RFI

Phylogenetic distribution in the chickens' gut ECOFCE

In total: 7 Phyla + 1 unassigned kingdom

OTUs differing in low and high RFI chickens

VMU

AFBI

30 OTUs differing

36 OTUs differing

18 in ♀

7 1 in low RFI

11 **†**in high RFI

24 in ♀

7 1 in low RFI

17 **†**in high RFI

6 **†**in low RFI

11 **†**in high RFI

16 in \bigcirc

8 1 in low RFI

8 1 in high RFI

RFI effects differ between locations

VMU male

13

AFBI female

Taxa showing same RFI effects at both locations

RF39 unclassified family

Clostridiaceae

OTU32 / Clostridiales

No taxa associated with low RFI at both locations

Predictive functional profiling of microbial communities – KEGG pathways

Within sex & location: *: P<0.05; +: P<0.1

lleal digesta

Faeces

Predicted metagenomics ⇒ differences between locations

■ low RFI ■ high RFI

Conclusion

Acknowledgements

- Lab team of the Institute of Animal Nutrition and Functional Plant Compounds, Vetmeduni and AFBI Hillsborough
- Cobb-Vantress
- Devenish Animal Nutrition, Garant-Tiernahrung GmbH
- This project has received funding from the European Union's Seventh Framework Programme

Thank you!

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794

Calculation of RFI

RFI = difference between observed and predicted feed intake, with lower RFI values indicating greater energy efficiency

$$\mathbf{RFI} = \mathsf{TFI} \left[\mathsf{a} + \mathsf{b}_1 \times \mathsf{BW}^{0.75} + \mathsf{b}_2 \times \mathsf{TBWG} \right],$$

where a is the intercept and b_1 and b_2 are partial regression coefficients of total feed intake (TFI), BW^{0.75} and total body weight gain (TBWG), respectively

Diet composition

Item	Starter	Grower	Finisher
	day 1-10 of life	day 11-21 of life	day 22-end of experiment
Ingredient, g/kg (as-fed basis)			
Corn	612	660	679
Soybean meal	331	282	260
Soybean oil	17.5	20.6	27.7
Limestone flour	11.0	9.8	7.0
Salt	2.0	2.0	2.3
Dicalcium phosphate	16.1	15.0	13.4
Vitamin-Mineral-Premix	11.0	11.0	10.0
Analyzed composition (g/kg DM)			
DM	926	923	914
ME (MJ/kg), calculated	13.7	14.3	14.6
Crude protein	243	223	216

Qiime workflow

1. split_libraries_fastq.py

- Max number of consecutive low quality base calls allowed before truncating a read [default: 3]
- Min number of consecutive high quality base calls to include a read (per single end read) as a fraction of the input read length [default: 0.75]
- Maximum number of N characters (ambiguous base) allowed in a sequence to retain it this is applied after quality trimming, and is total over combined paired end reads if applicable [default: 0]
- The maximum unacceptable Phred quality score [default: 3]
- Maximum number of errors in barcode [default: 1.5]
- → 8543871 sequences
- → sequence lengths (mean +/- std): 556.9701 +/- 16.1065)
- identify_chimeric_seqs.py (usearch61)
- Minimum length of sequence allowed [default: 64]
- Word length value [default: 8]
- Max_accepts value [default: 1]
- Max_rejects value [default: 8]
- → 8518063 sequences
- 3. pick_open_reference_otus.py (uclust)
- **→ 7726361 sequences**

Similarity between microbial communities

OTUs assigned at 97% similarity

Similarity between microbial communities

OTUs assigned at 97% similarity

Bacterial families differing in low and high RFI chickens ECOFCE

RFI ⇒ differences between locations

- *P*<0.05
- 0.05<*P*<0.1
- Phylum Firmicutes
- Phylum Proteobacteria
- Phylum Tenericutes
- Phylum Actinobacteria

Microbial composition – OTU-level

Ileal digesta dominated by members of

- Lactobacillus
- Enterobacteriaceae
- Clostridiales

• OTU2 (*Turicibacter*) highest abundant OTU in VMU chickens, 2nd highest abundant OTU in AFBI chickens

Caecal digesta almost exclusively occupied by members of *Clostridiales*

Faeces dominated by members of

- Clostridiales
- Lactobacillus
- Enterobacteriaceae

OTU2 (Turicibacter) 2nd highest abundant OTU in VMU and AFBI chickens