EFFICIENT & ECOLOGICALLY-FRIENDLY PIG AND POULTRY PRODUCTION.

ECO-FCE

A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY
AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

BASIC DATA

Funding: EU-FP7

(€ 6 million)

Start date:

1 February 2013

Duration:

48 months (2013 to 2017)

Molecular alterations of broilers differing in feed conversion efficiency

How to improve feed efficiency

Factors driving feed efficiency (FE)

Peed intake
 Diet
 Housing
 Microbiota
 Resource allocation

Transcriptional and epigenetic mechanisms

Divergent performance

Acute and persistent adaptation

- FE is affected by several factors:
 - Diet: composition, energy concentration
 - Housing: temperature, humidity, space...
 - Animal: age, sex, health status...
- High animal-individual variation of FE under controlled conditions
 - cellular energy expenditure: ion pump, mitochondrial coupling/thermogenesis

Organs/tissues driving feed efficiency (FE)

- digestion and absorption of nutrients: gut
- partitioning and primary metabolism: liver
- growth, physical activity, and thermoregulation and major side of energy expenditure: muscle
- superior mechanisms to orchestrate resource allocation like feed intake, feeding behaviour, endocrine parameters: HPA axis; sympathetic activity (SAM system)...

Known molecular routes affecting FE in chicken

- Mitochondrial function ¹
 - Generate 90% of cellular ATP, uncoupling of electron transport chain (e.g. COXII, UCP, PPAR-γ)
- Energy expenditure ³
 - maintaining energy homeostasis (AMPK)
 - sensors of energy status (mTOR)
 - energy allocation (PI3K/Akt pathway)
- Regulations via central nervous system (POMC, CRH, melanocortin receptors)²
- Recycling pathways (e.g. nitrogen recycling, transporters)

Objectives

Transcriptome-analysis:

To gain a new insight into the molecular mechanisms relevant for FCE by analysing the acquisition of genomic information

Chicken – Transcriptome analysis

Animals selected from FE-tested broilers from Vetmeduni and AFBI trials

Phenotypic effects of improved FE in chicken

Altered molecular themes of lipid metabolism in liver and muscle reflect the influence on muscle-fat ratio

Liver and bone metabolism were unaffected between efficiency divergent chickens

- 1 ELISA
- ② Blood chemistry

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794.

Tissue specific transcript abundance (p<0.05, q<0.25)

	high FCE >	low FCE >	
Tissue	low FCE	high FCE	
Duodenum	150	154	
Jejunum	118	108	
lleum	86	65	
Liver	166	37	
Breast muscle	e 159	135	
Leg muscle	40	37	

Expression profiles of the gut indicate for independent tissues with distinct functions for nutrient absorption and immune competence

Regulated canonical pathways in small intestine

Tissue	Canonical pathway		p-value
Duodenum	MIF Regulation of Innate Immunity	innate immunity	1.74E-03
	Cdc42 Signaling	cell-cell adhaeson, cell polarity	2.00E-03
	• Superpathway of Cholesterol Biosynthesis	membran components	1.00E-16
	Cholesterol Biosynthesis I	membran components	1.26E-13
Jejunum	 Granulocyte Adhesion and Diapedesis 	inflammation, immunity	3.24E-03
	 LPS/IL-1 Mediated Inhibition of RXR Function 	innate immunity	6.17E-03
	 Superpathway of Cholesterol Biosynthesis 	membran components	3.31E-05
	• Mevalonate Pathway I	membran components	3.80E-04
lleum	 Clathrin-mediated Endocytosis Signaling 	endocytosis	1.29E-02
	• GPCR-Mediated Integration of Enteroendocrine Signaling Exemplified by an L Cell	intestinal chemosensation	1.51E-02
	Phagosome Maturation	internalisation of particles	1.82E-03
	Methylglyoxal Degradation III	detoxification	8.51E-03

Pathways with putative impact on:

- In nutrient absorption especially in posterior parts of the small intestine (solute carriers and aquaporins are regulated in ileum)
- membrane functions (membrane lipids cholesterol biosynthesis)
- ➤ altered host-microbe interaction

Regulated biofunctions in small intestine

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794.

Hub molecules regulated in muscle and jejunum

Gene	P-value (NGS)	P-value (qPCR)	Expression	Biofunction
AQP4 (muscle)	0.04	<0.01	H>L	molecular transport
FNDC5 (muscle)	0.01	<0.01	H>L	cell-to-cell signaling and interaction
FABP4 (jejunum)	0.01	<0.01	H <l< td=""></l<>	
THRSP (jejunum)	0.04	<0.01	H <l< td=""><td>lipid metabolism and small molecule biochemistry</td></l<>	lipid metabolism and small molecule biochemistry

Conclusion

- No differences of major bio-functions known to be related with divergent FE e.g. AMPK, mTOR, UCP
 - →Improved genetics of commercial broilers regarding efficient energy utilisation
- Unaffected parameters representing liver and bone metabolism e.g.
 Vitamin D3, osteocalcin, parathyroid hormone
- BUT optimization potential towards improved FE:
 - → Molecular transport processes (role of aquaporins and solute carriers)
 - → Lipid metabolism (affected muscle-fat ratio related to FE; e.g. FABP4)
 - → Host-microbiota interaction
 - →Immune features with implications to health and welfare aspects (innate immunity)

Outlook

- Importance of host-microbe interactions
 - → Integration of gut microbiota profiles and holistic expression patterns of high and low efficient animals
 - → Elucidation of gut barrier functions (induction of non-coding RNAs and antimicrobial peptides in gut and GALT-gut associated lymphoid tissue)
- Focus on the conversion of specific micro-and macronutrients
 - → Micronutrients: phosphorus, nitrate
 - → Macronutrients: alternative protein sources, regional fodder plants
- Superior endocrine regulations
 - → Thyroid hormones T3, T4

Thank you for your attention!

Chicken – Transcriptome analysis

Broiler feeding trail and sample collection

Sequencing HiSeq2500

Data Analysis

RNA-Seq statistics

