EFFICIENT & ECOLOGICALLY-FRIENDLY PIG AND POULTRY PRODUCTION.

ECO-FCE

A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY
AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

BASIC DATA

Funding: EU-FP7

(€ 6 million)

Start date:

1 February 2013

Duration:

48 months (2013 to 2017)

Understanding the genetic architecture of feed efficiency traits in monogastrics

Background – Feed efficiency (FE)

Contributions of ECO-FCE to breeding and producing pig and poultry

- improve energy use efficiency and reduce environmental footprint
- provide strategies to save resources and costs

Common measurement of FCE = feed conversion ratio (FCR)

- FCR= $\frac{\text{feed intake}}{\text{weight gain}}$
- breeding goal = low FCR (high efficiency)
- recording and measurement in routine is difficult and costly
- clarification of genetic background and development of molecular markers necessary

Factors influencing feed efficiency

Extrinsic and intrinsic factors affecting FE

→ genetic factors of diverse biological processes contribute to FE

Heritability of FCE related traits

- moderate heritability of FCR in poultry (0.41)¹ and pigs (≈0.3)²
- low to moderate heritability of weight gain, feed intake and feeding behaviour traits³

Objectives

Characterisation of differences in the genetic profile of animals with good and poor FE

→ identify the genetic architecture of feed efficiency traits in pig and chicken

Genetics - Pipeline

- DNA extraction from blood samples
- Genotyping using Illumina SNP Beadchips

- Genotype calling using Genomestudio (call frequency ≥ 0.95)
- Imputation of missing genotypes using fastPHASE¹
- Single-marker GWAS using JMP Genomics
- Multi-marker GWAS using GenSel (Bayes B)²
 - + contribution of 1Mb consecutive windows to genetic variance
- Integration of single- and multi-marker analyses to identify QTL regions and select candidate genes

Genetics of FE traits in broiler

ECOFCE

Material – Birds (Cobb-Vantress)

- 5000 birds of the commercial Cobb broiler line A
 - → heaviest 1000 birds FE tested between days 39-46
- 859 genotyped broilers (60K SNP chip¹)
- Traits: body weight, feed intake, weight gain, FCR

Heritability

- Broiler line already under selection for ADG and FCR for generations
- Above mentioned preselection based on weight
- → Low heritability of FE and body weight traits (~0.03-0.1)

Chicken – feed conversion ratio

Single-marker approach:

Bayes Factor 5 10 15 Chromosome

		1Mb genetic window			window	Top SNP in Bayesian GWAS				_	
			Start	End	explained		Gga4	Bayes		Candidate	
_		Chr	(Mb)	(Mb)	V _{genetic} (%)	SNP	position	factor	p-value	genes	
	1	1	57.0	58.0	0.54	GGaluGA019865	57431192	12.32	3.29	AGK	
	2	6	6.0	7.0	0.95	rs14568465	6164912	14.50	3.57	Sirt1	
	3	19	2.0	3.0	0.87	rs14117856	2657299	7.26	2.66	GTF2I	

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794

Validation of candidates

- Acylglycerol Kinase (AGK)
 - Involved in biosynthesis of signaling lipids
 - Associated with mitochondrial disorders in humans

Tagging SNP AGK c.1166G>A (p.R389H):

- General Transcription Factor IIi (GTF2I)
 - Involved in regulation of growth factor signaling
 - Genomic region affected by chromosomal rearrangements in humans

Tagging SNP GTF2I c.2011A>C (p.K671Q):

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794.

Entropy analysis – Location of the most informative SNPs

Overview of entropy analysis in chickens presented by M. Graczyk (Poster session):

Overview of entropy analysis in pigs presented by A. Borowska (Poster session):

Genetics of FE traits in pigs

Material – Pigs (Hermitage Genetics)

- Hylean Maxgro terminal sire line
- Sampled between 2006-2015
- FE tested during grower-finisher phase
- 1296 genotyped boars (60K SNP chip)
- Traits: Breeding values, FCR, carcass composition, feeding behaviour

The Pig Breeding Company Hermitage Genetics

Heritability

Moderate heritability of carcass composition traits (0.39-0.42)
 and FE/feeding behaviour traits (0.30-0.40)

Pig – feed conversion ratio

Single-marker regression model (random effects: pedigree, covariate: average age on test)

Bayesian multi-marker model – contribution of 1Mb windows to the genetic variance

Chromosor	Range ne (Mb)	% Var	Top SNP (Bayesia	n) Position	Bayes Factor	-log ₁₀ (p-value)	candidate gene
11	24-25	1.61	ASGA0050399	24616066	22.73	4.43	ENOX1 , DnaJC15
11	25-26	1.2	H3GA0031666	25685231	13.90	3.76	

Porcine candidate genes for feed efficiency

> DnaJC15

- Negative regulator of mitochondrial respiratory chain
- Restricts ATP-generation

- other candidate genes for FE:
- AQP4 regulates body water balance and mediates water flow (for FCR)
- PFKFB4 involved in synthesis and degradation of fructose 2,6bisphosphate (regulation of glycolysis) (for daily feed intake)
- PPP3CA regulates bone formation and osteoblast differentiation (for daily feeding rate)

Overview of QTL regions

Chicken

	Identified QTL
Trait	regions
FCR	10
Feed intake	6
Weight gain	2
Body weight (36days)	5
Body weight (46days)	4

Trait	Identified QTL regions
FCR	12
Back fat	12
Percent lean	8
Days to 110 kg	11
Daily feed intake	10
Daily occupation time	9
Consumption rate	8
Daily feeder visits	5
Bv days to 110 kg	7
Bv FCR	16

→ resource for the development of informative biomarkers for FE traits

Thank you for your attention!