

EFFICIENT & ECOLOGICALLY-FRIENDLY PIG AND POULTRY PRODUCTION.

A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

BASIC DATA

Funding:

EU-FP7 (€ 6 million)

Start date:

1 February 2013

Duration:

48 months (2013 to 2016)

Proper modelling of feed efficiency in breeding programs revealed through novel Bayesian response to selection methodology: RFI vs FCR

Mahmoud Shirali Patrick Varley Just Jensen

FCR occupies large proportion of breeding objectives in pig breeding programs

The MAXGRO™ terminal line

The Danish Duroc terminal line

Measures of feed efficiency

FCR: gross measure

RFI: partial measure

RFI = Observed ADFI – Expected ADFI

 $RFI = ADFI - b_1 ADG - b_2 LMP$

Traits

• ADFI: 2.61 (0.39) kg/d

• ADG: 1.12 (0.15) kg/d

• LMP: 62.7 (1.97) percent

The MAXGRO™ terminal line

Statistical model: Bayesian analysis

$$y_{ijkl}^{ADFI} = Gender_{ij} + Parity_{ik} + YS_{il} + b^{ADFI}(SBW_i) + a_i^{ADFI} + pe_i^{ADFI} + e_{ijkl}^{ADFI}$$

$$y_{ijkl}^{ADG} = Gender_{ij} + Parity_{ik} + YS_{il} + b^{ADG}(SBW_i) + a_i^{ADG} + pe_i^{ADG} + e_{ijkl}^{ADG}$$

$$y_{ijkl}^{LMP} = Gender_{ij} + Parity_{ik} + YS_{il} + b^{LMP}(EBW_i) + a_i^{LMP} + pe_i^{LMP} + e_{ijkl}^{LMP}$$

Modelling residual

feed intake

RFI)=(ADFI

E(ADFI)

Genetic RFI
$$(RFI_g)$$
 $a_i^{RFI_g}$ Phenotypic RFI (RFI_p)

$$= a_i^{ADFI} -$$

$$b_{g.1} \; a_i^{ADG} - b_{g.2} \; a_i^{LMR}$$

$$a_i^{ADFI}$$
 –

$$b_{p.1} a_i^{ADG} - b_{p.2} \hat{a}_i^{LMF}$$

$$\begin{bmatrix} \mathbf{G}_{RFI} & \mathbf{G}_{RFI,p} \\ \mathbf{G}_{p,RFI_g} & \mathbf{G}_p \end{bmatrix} = \mathbf{B} \mathbf{G} \mathbf{B}'$$

$$\begin{bmatrix} \mathbf{P}_{RFI} & \mathbf{P}_{RFI,p} \\ \mathbf{P}_{p,RFI} & \mathbf{P}_p \end{bmatrix} = \mathbf{B} \mathbf{P} \mathbf{B}'$$

$$\boldsymbol{B} = \begin{bmatrix} \mathbf{I}_{fi} & -\boldsymbol{b}_{fip} \\ 0 & \mathbf{I}_{p} \end{bmatrix}$$

Programme (FP7 2007/2013) under grant agreement No. 311794

₩₩ EC**••**FCE

Feed conversion ratio (FCR) estimation

$$a_i^{FCR} = \frac{\mu_{ADFI} + \hat{a}_i^{ADFI}}{\mu_{ADG} + \hat{a}_i^{ADG}} - \frac{\mu_{ADFI}}{\mu_{ADG}}$$

(CC)

One use of heritability is to determine how appropriation will respond to selection

26.45% with 5.58 PSD of the genetic variation in ADFI is explained by RFI_g .

RFI_g is independent of production traits of FCE

Selection for RFI results in reduction of ADFI without altering the production traits $\bigotimes \bigotimes$ Selection for FCR results in disproportional selection on its component traits $E \subset \bigoplus$

Selection for FCR results in disproportional selection pressure on its component traits and also LMP

RFI_g allows

- 1) selection on the proportion of feed intake that is independent of production; and
 - 2) easier and better selection index weights for the traits in the breeding programs

Selection for improved feed efficiency is likely best achieved through multiple-trait selection on RFI_g and production traits

Joint selection for feed intake and production traits can also result in genetic improvement of feed efficiency

DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS

