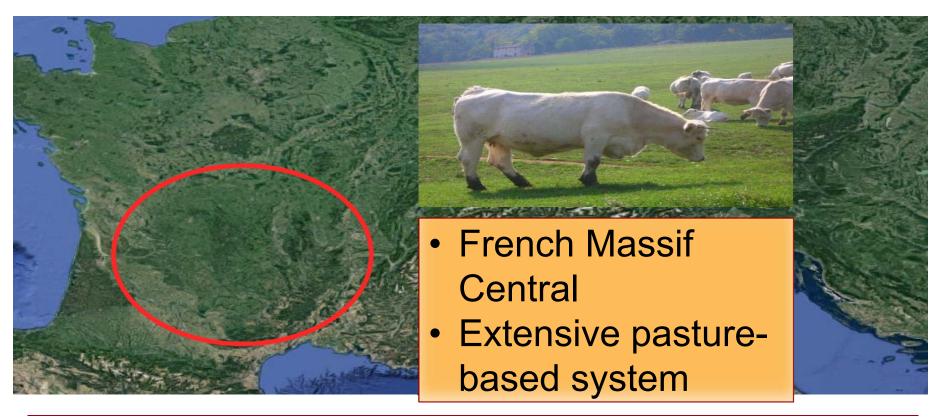


Environmental sustainability of integrated France-Italy specialized beef chain using LCA method

M. Berton, J. Agabriel, M. Lherm, L. Gallo and E. Sturaro marco.berton.4@phd.unipd.it

67th Annual Meeting of the European Federation of Animal Science Belfast UK, 29 Aug - 2 Sept 2016


Introduction

Introduction

Introduction

Aim

This study aimed to analyse the sustainability of the integrated France-Italy beef production system through **Environmental impact indicators**, computed according to Life Cycle Assessment method

- Global warming potential
- Acidification potential
- Eutrophication potential
- Cumulative energy demand
- Land occupation
- Land occupation due to human-competitive feedstuffs

LCA definition

- 73 Charolais breed fattening batches (i.e. animals homogeneous for origin, finishing herd and Italian fattening period) reared during 2014
 - 4882 heads
 - born from November 2012 to April 2013 and from November to December 2013
 - 14 North-Eastern Italy intensive fattening farms
- The reference unit was the fattening batch.
- Functional unit: 1 kg of body weight (BW) sold (at the end of fattening period).

System boundaries

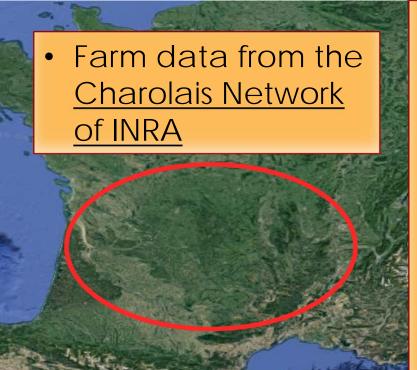
- Cradle-to-farm gate boundary
 - Impacts from calf's birth to the end of the fattening period
- A single fattening batch → many suckler cow-calf farms
 - a complex and high data-demanding system

3 Italian clusters

3 groups of French farms selling calves with similar characteristics of the correspondent Italian cluster

Cluster Analysis of Italian batches

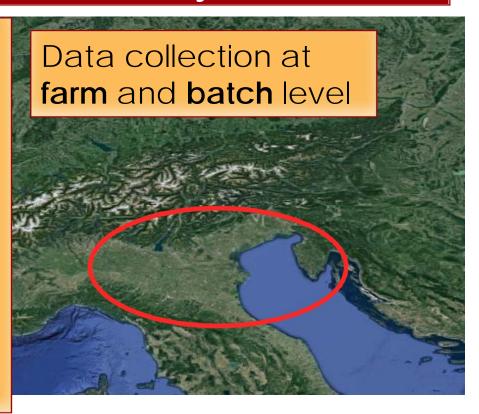
Calving date, BW and age at sale to Italy


FRA

Farm data from Charolais Network database of INRA

Data collection: France

- herd management (number of calvings, livestock units and mortality, prolificacy, replacement rates)
- use of inputs
 (concentrates, fertilizers, fuel, plastic, bedding straw)
- agricultural surfaces
 (grassland, hay and grass silage, maize cropland)
- Outputs
- Mass allocation method


Data collection: Italy

Batch level

- Number of animals
- BW and dates
 - Sale from France
 - Arrival in Italy
 - End of the fattening period
- Feed intake, diet composition, chemical analysis → monthly samples

Farm level

- Agricultural inputs, land and yields
- Industrial materials
- Bedding materials
- Manure management

Computation of impacts

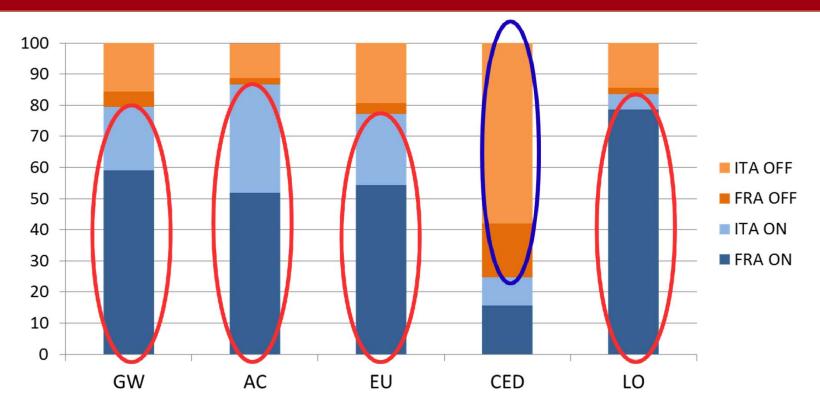
Impact category	References
	IPCC (2006)
Global warming potential	Sauvant et al. (2011) :
Global waithing potential	- feed intake (%BW)
	- % of concentrates in the diet
Acidification potential	IPCC (2006)
	Vértes et al. (1997)
Eutrophication potential	Nemeck and Kagi (2007)
	IPCC (2006)
Cumulative energy demand	Ecoinvent 3.1 (Ecoinvent Centre, 2014), Agri-footprint 1.0 databases (Blonk Agrifootprint, 2014)
Landageupation	On-farm data
Land occupation	Ecoinvent 3.1 (Ecoinvent Centre, 2014), Agri-footprint 1.0 databases (Blonk Agrifootprint, 2014)

Impact factors for agricultural and materials -> Ecoinvent and Agrifootprint databases

Results: descriptive statistics of productive performances

Variable	Unit	Mean	SD
Batch size	heads	66	33
BW at sale form France	kg/head	405	13
Initial BW	kg/head	387	13
Final BW	kg/head	731	19
ADG	kg/day	1.52	0.09
Length of fattening	days	226	11
DMI	kg DM/head/day	10.6	0.5

BW: body weight, ADG: average daily gain, DMI: dry matter intake


Results: descriptive statistics of sustainability indicators (per 1 kg BW)

Impact category	Unit	Mean ± SD
Global warming potential	kg CO ₂ -eq	13.0 ± 0.7
Global warming potential (570 kg C/ha of grassland C sequestration; Soussana et al., 2010)	kg CO ₂ -eq	9.9 ± 0.7
Acidification potential	g SO ₂ -eq	199 ± 14
Eutrophication potential	g PO ₄ -eq	60 ± 4
Cumulative energy demand	MJ	32 ± 4
Land occupation	m²/year	19.2 ± 0.7

ON- vs OFF-farm

Grass vs crop land occupation

Integrated France-Italy beef

sector: 19.2 m²/year

grassland

Humancompetitive land occupation Land occupation per 1 kg BW

Pig sector

4.1 m²/year

(Gonzales-Garcia et al.,

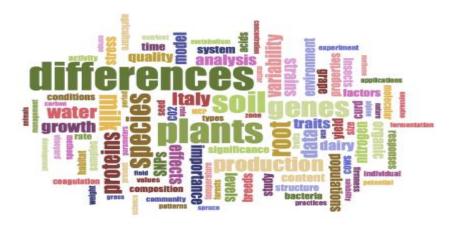
2015)

5.4 m²/year

(Basset-Mens and van der

Werf, 2005)

3.9 ± 0.3 m²/year



Conclusions

- The integration between pasture-based suckler cow-calf farms in France (Massif Central) and cereal-based fattening farms of northern Italy allows the optimisation of the use of the resources offered by different agro-ecosystems for beef production.
- The environmental impact of the integrated France-Italy beef sector was within the range found in literature, although the diversity of methodology did not enable an accurate comparison.
- The land occupation found was greater than those of monogastric production, but the human-competitive share was similar.

Thank you for your attention

Calves characteristics per Italian cluster

Cluster	N batches	BWS (kg)		ADG (kg/d)		Age (days)		Birth date	
		Mean	SD	Mean	SD	Mean	SD	Min	Max
Early Winter	12	405	9	1.33	0.05	271	10	1-nov-13	20-dic-13
Mid Winter	32	406	14	1.18	0.08	306	24	17-dic-12	25-feb-13
Late Winter	29	405	13	1.05	0.10	344	29	27-feb-13	10-apr-13

