

Evaluation of production efficiencies among primiparous suckler cows of diverse genotype at pasture

S. McCabe^{1,2}, N. McHugh³, N. O'Connell² and R. Prendiville¹

EAAP – 67th Annual Meeting, Belfast, 29th Aug 2016

¹Teagasc, Grange, Dunsany, Co. Meath, Ireland

²School of Biological Sciences, NI Technology Centre, Queens University Belfast, UK and

³Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.

Background

- Beef suckler cows comprise half (1.1 m) of the national cow population (CSO, 2016)
- Two different replacement strategies Charolais
 - Heifers sourced from the suckler herd
 - Beef crossbred heifers sourced from the dairy herd
- New economic breeding indexes aid in selection process for more profitable suckler cows
 Hereford
 - Terminal Index
 - Replacement Index

Other

Replacement Index Terminal Index

Identificat	ion of animals s	suitable for bre	eding
or selectin	Relative g.replacement	F	Relative

Based on a cow's pe

Calving traits 16

Feed intake

Beef traits

Ter₂mina

	Relative weighting (%)
Calving traits	25
Beef traits	72
Docility	3

Maldentification of animals suitable το breed cattle Female slaughter, or sale as weanlings/store cattle.

Docility

Based on the progeny's performance

National Genetic Trends

Replacement Index

Identification of animals suitable for breeding or selecting replacements

Based on a cows performance per calving

	Relative weighting (%)		
Calving traits	16		
Feed intake	18		
Beef traits	21		
Maternal milk	18		
Female fertility	23		
Docility	4		

Drivers of Profitability

Replacement Index Objective:

Facilitate genetic selection that has the potential to increase long-term suckler cow productivity

Experimental Overview

Maternal Herd established 2013

Two diverse genotypes

- A. high genetic merit animals
- B. low genetic merit animals

Replacement strategy

- 1. cows sourced from the suckler herd
- beef crossbred cows sourced from the dairy herd

Divergence in Index

Heifers sourced were sired by AA and LM bulls only

- High Replacement Index (€119)
- Low Replacement Index (€50)

		The same of the sa
	Hig	
Cow traits (€)	84	
Progeny traits (€)	35	
Replacement Index (€)	119	50

Objectives

Estimate production and energetic efficiencies among primiparous suckler cows of diverse genotype during mid lactation at pasture

Materials and Methods

- 84 primiparous cows + progeny
 - 52 high index & 32 low index cows
 - 40 beef & 44 dairy crossbred cows
- Grazing Management
 - Rotational grazing system
 - Pre & post-grazing height 11.4 (s.d. 1.56) and 4.4 (s.d. 0.74) cm
- Mean calving date 21st March
- Cows were turned out to grass early April
- Breeding commenced 29th April using terminal AA and LM sires
 - 13 weeks: 6 weeks AI, 7 weeks stock bulls
- Gradual weaning from 20th 27th October
- Cows were housed on 3rd November ad libitum grass silage

Animal Measurements

- Live weight (cow and calf)
- Cow BCS (0-5)

- every three weeks
- Milk yield: weigh-suckle-weigh (McGee et al., 2005)
 - 120 and 156 days in milk
- Grass Dry Matter Intake (GDMI)
 - n-alkane technique: twice daily bolus for 12
 consecutive days 6 days intake data (Dillon, 1993)
 - 126 and 162 days in milk

Statistical Analysis

- Analysis carried out at the cow level
- PROC HPMIXED
- Fixed effects:
 - Cow
 - Genetic merit of the cow
 - Heterosis coefficient
 - Recombination loss

Sire of the cow was a random effect

The Irish Agriculture and Food Development Authority

Milk Yield (kg/d)

DRY MATTER INTAKE & FEED EFFICIENCY

Cow Production Efficiency

	Replacement Index			
	High	Low	s.e.¹	P-value
Live weight (kg)	555	566	7.9	0.2433
GDMI (kg/d)	11.8	12.0	0.31	0.5574
GDMI/100kg BW (kg)	2.20	2.11	0.062	0.2072
Milk Yield/100kg BW (kg)	1.26	1.13	0.054	0.1163
Milk Yield/GDMI (kg)	0.58	0.54	0.025	0.2146
RFI (UFL)	-0.03	0.22	0.260	0.4103

¹ weighted standard error of the mean

Conclusion

- Results from year one:
 - High index cows produced an additional 1.1 kg/d milk compared to low index cows
 - High index cows had a lower BCS than low index cows
 - No significant differences were found on any other traits investigated
 - Cow LW, GDMI or production efficiency during midlactation

