

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

Evaluating ecosystem services in the life cycle assessment framework

Thomas Nemecek Agroscope Institute for Sustainability Sciences LCA group

Thomas.Nemecek@agroscope.admin.ch

29th August 2016

www.agroscope.ch I good food, healthy environment

Overview

- The concepts of ecosystem services (ESS) and life cycle assessment (LCA) within the sustainability framework
- Crossing ESS and LCA: overlaps and gaps
- Different approaches to address ESS within LCA: options and examples
- Challenges of combining ESS and LCA
- Conclusions

Different approaches to assessing sustainability

- Both methodologies have similar goals:
 - To preserve an intact nature and environment, supporting human wellbeing
- Ecosystem services (ESS) assessment:
 - Quantifies benefits people obtain from ecosystems → positive perception
 - Processes having no benefit for humans are ignored
- Life cycle assessment (LCA):
 - Quantifies the impacts of human activities on the environment → negative perception

Ecosystem services (ESS) in the sustainability framework

- Provisioning services \rightarrow economic dimension
- Regulation and maintenance \rightarrow environmental dimension
- Cultural services \rightarrow social/societal dimension
- Addresses all three dimensions of sustainability, but only as related to the ecosystems; all other aspects of sustainability are ignored

LCA in the sustainability framework and related to land use impacts

- Environmental impacts are referred to a functional unit, which usually represents the economic output
- «Classical» LCA studies do not cover many aspects of ESS
- Comprehensive LCA methods (current good practice) include an assessment of land use impacts, but general consensus on the methodology is lacking
- LCA has a global focus, but is increasingly including regional and local impacts
- Land occupation and land transformation impacts are distinguished
- Biodiversity in LCA: addresses mainly species diversity and not functional biodiversity
- Addressing ESS in LCA is a new topic under development

General approaches for the quantification of ESS

- A. Economic valuation (Häyhä & Franzese, 2014):
 - 1. Market price method
 - 2. Productivity method
 - 3. Hedonic pricing method
 - 4. Travel cost method
 - 5. Damage costs avoided / Replacement costs / Substitute costs methods
 - 6. Contingent valuation method
 - 7. Contingent choice method
 - 8. Benefit transfer method
- B. Thermodynamic approaches:
 - A. exergy, emergy, NPP / HANPP
- C. Ecological approaches:
 - Many different indicators

General LCA framework and positioning ESS

Where do we fit the ESS into LCA?

Section	Division	Group	Consideration in LCA	
		Biomass - Cultivated plants and animals	Functional unit	
	Nutrition	Biomass - Wild plants and animals	Biotic resource depletion	
Provisioning		Water	nc	
	Materials	Biomass	Functional unit	
		Water	nc	
	Energy	Biomass-based energy sources	Functional unit	

Section	Division	Group	Consideration in LCA		
	Mediation of waste, toxics and other nuisances	Mediation by biota	nc		
			C sequestration		
		Mediation by ecosystems	Nutrient leaching		
Regulation &			Aq./Terr. Eutrophication		
Maintenance	Mediation of flows	Mass flows	Soil quality		
services			Soil erosion		
		Liquid flows	Soil quality		
			Soil erosion		
		Gaseous / air flows	nc		

Section	Division	Group	Consideration in LCA
Regulation &	Maintenance of physical, chemical, biological conditions	Lifecycle maintenance, habitat and gene pool protection	Biodiversity Pollination
		Pest and disease control	Indirectly (e.g. reduced pesticide application) Biodiversity
Maintenance		Soil formation and	Soil quality,
services		composition	Indirectly (N fixation)
			Aq. ecotoxicity
		Water conditions	Aq. eutrophication
			Aq. acidification
		Atmospheric composition and climate regulation	Global warming potential

Agroscope

Section	Division	Group	Consideration in LCA
	Physical and intellectual	Physical and experiential interactions	nc (social LCA)
Cultural	ecosystems, and landscapes	Intellectual and representative interactions	nc (social LCA)
	Spiritual, symbolic and other	Spiritual and/or emblematic	nc (social LCA)
	interactions with biota, ecosystems, and landcapes	Other cultural outputs	Landscape aesthetics Conservation biodiversity

Options to integrate ESS into LCA

Several options are available in LCA to address the multifunctionality of agricultural systems and to include ESS:

- 1. Using multiple functional units to account for the various functions of the agricultural system
- 2. Using allocation, by dividing the environmental impacts between the products and ESS.
- 3. Using system expansion, where an alternative provision of ESS is subtracted (avoided impacts).
- 4. Including ESS as additional indicators, considering the impacts on ESS.

Agroscope

Option 1: Using multiple functional units in LCA

1. Land management function:

agricultural use of an area

ha*year

<u>Objective</u>: reduce environmental intensity per area

2. Productive function: food, feed, fuel and fibre <u>Examples</u>: kg DM, MJ digestible energy (physical unit)

<u>Objective</u>: Optimise productive eco-efficiency

3. Financial function: return

Examples: Gross profit, gross margin, income (currency unit, €, £, \$, ...)

Objective: Optimise financial eco-efficiency

Option 1: Multiple functional units: introducing legumes into crop rotations

		CR2 in % of CR1	Saxor	iy-Anh	alt (D)	Barrois (F) Vaud (CH)				Castilla y Leon (E)				
		Functional unit	ha	€	GJ	ha	€	GJ	ha	€	GJ	ha	€	GJ
	ce nent	energy demand	86%	82%	92%	89%	86%	93%	69%	68%	85%	102%	101%	103%
	agen	global warming potential	89%	85%	95%	92%	90%	97%	91%	89%	113%	110%	108%	111%
	mar	ozone formation	90%	86%	96%	94%	92%	99%	85%	83%	105%	103%	102%	104%
rient	rient na- nent	eutrophication	98%	94%	106%	94%	91%	98%	110%	107%	135%	114%	113%	116%
Nutr mai gem	acidification	83%	79%	89%	82%	80%	86%	86%	84%	106%	103%	102%	104%	
	nent	terrestrial ecotoxicity EDIP	63%	61%	68%	93%	90%	98%	118%	115%	145%	104%	103%	105%
	nager	aquatic ecotoxicity EDIP	102%	97%	109%	87%	85%	91%	96%	94%	119%	75%	74%	75%
	it mai	terrestrial ecotoxicity CML	99%	95%	106%	80%	78%	84%	100%	98%	124%	135%	134%	137%
	lutan	aquatic ecotoxicity CML	96%	92%	103%	81%	79%	85%	113%	111%	140%	90%	89%	91%
	Pol	human toxicity CML	85%	81%	91%	87%	84%	91%	95%	92%	117%	103%	102%	104%
	_													
CF	2 com	pared to CR1 is:	1	0.04										
		very favourable		CR1: 0	crop rot	ation N	/ithout	grain l	egumes	s (stanc	lard).			
		favourable			crop rot	ation w	/ith gra	in legu	mes.					
		similar												
		untavourable												
		very unfavourable												

Evaluating ecosystem services in the life cycle assessment framework

Thomas Nemecek | Agroscope

Source: Nemecek et al. (2008)

15

Option 1: Using multiple functional units in LCA

- Relatively simple implementation
- ESS can be covered only partly
- Interpretation and communication is challenging
- Trade-offs can be shown

16

Options 2 and 3: Allocation and system expansion

In both approaches, the ESS are considered as co-functions / co-products of the agricultural production

Agroscope

Option 2: Allocation

- The environmental impacts are partitioned according to a common property of the co-products
- Mostly this is the economic return → requires an economic valuation of ESS
- Many different options for economic valuation exist
- Product value and direct payments for ESS can be used as allocation key
- But: Are the direct payments a good proxy for ESS?
- Relatively simple, if ESS can be quantified

Option 3: System expansion

- An alternative system delivering the requested ESS is subtracted
- Difficult to identify the alternative system
- Economic valuation is not needed
- Can become quite complex
- In both cases (allocation and system expansion) the ESS delivery has to bear a part of the environmental burden

Option 4: Using specific additional indicators for impacts on ESS

- UNEP-SETAC guidelines: defining additional impact categories for the damage to ESS
 - Biodiversity damage potential
 - Species diversity
 - Functional diversity
 - Ecosystem services damage potential
 - Biotic production potential
 - Climate regulation potential
 - Freshwater regulation potential
 - Erosion regulation potential
 - Water purification potential
- See presentation of C. Cederberg
- Application in practice is not easy
- Other approaches: exergy, specific land-use related impact categories

Thermodynamic approaches: Biomass production potential based on NPP in exergy units

Agroscope

Fig. 2 World map of characterization factors of land resources in human-made systems, based on the potential availability of natural net primary production (in exergy units, MJ_{ex}/m^2year)

Evaluating ecosystem services in the life cycle assessment framework Thomas Nemecek | Agroscope 21

SALCA biodiversity – framework (SALCA = Swiss Agricultural Life Cycle Assessment)

- **11 Indicator species groups** were determined considering ecological and LCA criteria: flora, birds, mammals, amphibians, molluscs, spiders, carabids, butterflies, wild bees, and grasshoppers.
- Two characteristics: **overall species diversity** of the indicator species groups and **ecologically demanding species**
- Extensive **inventory data about agricultural practices**: occupation, emissions, farming intensity indicators (e.g. number of cuts) and process figures (e.g. herbicide type). Beside typical cultivated fields, semi-natural habitats were integrated.
- Characterisation based on scoring system was evolved to estimate every indicator species group's reaction to agricultural activities followed by an aggregation step resulting in scores.
- Aggregation and normalisation of scores: biodiversity value and biodiversity potential

SALCA methodology Method for biodiversity - principle

SALCA methodology Method for biodiversity – case study

		Biodiversity scores						
		Gra	sslan	d	W	Whe	heat	
Production system	(A)	(B)	(C)	(D)	(A)	(B)	(C)	(D)
Overall species diversity	6.2	6.4	13.8	21.3	7.7	7.5	8.4	8.7
Grassland flora	3.7	3.9	11.4	18.5				
Crop flora					15.2	15.1	16.0	17.3
Birds	6.4	6.7	13.8	22.0	5.3	5.0	6.2	6.4
Mammals	7.3	7.3	11.1	11.1	4.6	4.6	4.6	4.6
Amphibians	2.1	2.1	5.2	9.5	1.7	1.7	1.8	1.8
Molluscs	5.4	5.6	5.8	11.3	2.2	2.2	2.2	2.2
Spiders	9.1	9.3	15.8	22.4	8.2	8.0	10.5	10.7
Carabid Beetles	7.0	7.4	13.6	21.0	10.9	10.6	11.7	11.9
Butterflies	6.8	7.0	20.0	36.0				
Wild Bees	7.4	7.6	18.6	23.0	5.2	4.9	5.0	4.8
Grasshoppers	6.9	6.9	19.4	33.1				
Species with high ecological	requ	ireme	ents					
Amphibians	0.8	0.8	2.9	4.8	1.5	1.4	1.6	1.6
Spiders	8.9	9.0	15.3	21.6	8.0	7.8	10.3	10.5
Carabid Beetles	7.0	7.3	13.4	20.6	10.6	10.1	11.2	11.3

Agroscope

Butterflies

Grasshoppers

Source: Jeanneret et al. 2006

Results of SALCA-Biodiversity. Biodiversity scores are given per ha cultivated crop. A, B, C, D are management systems with main characteristics :

Grassland systems (hay production):

- (A) 5 cuts/year, fertilised with slurry; 11t DM/ha
- (B) 4 cuts/year, fertilised with slurry; 9t DM/ha
- (C) 3 cuts/year, fertilised with solid manure; 5.6t DM/ha
- (D) 1 cut/year, no fertilisation; 2.7t DM/ha

Winter wheat systems:

- (A) Conventional production; 5.8t DM/ha
- (B) Integrated production intensive; 5.5t DM/ha
- (C) Integrated production extensive; 4.5t DM/ha
- (D) Organic production; 3.5t DM/ha

Scores of grassland (A) and winter wheat (B) systems are set as **reference scores**. Color codes are given for rough comparison:

□ similar to the reference (95%<score<104%)

- better than the reference (105%<score<114%)
- much better than the reference (score >115%)
- \square no relevance for the considered system

Evaluating ecosystem services in the life cycle assessment framework Thomas Nemecek | Agroscope

19.4136.0

6.8

6.8

6.7

6.8

O

Trade-off between productivity and biodiversity: intensive and extensive beef production

Evaluating ecosystem services in the life cycle assessment framework Thomas Nemecek | Agroscope

SALCA soil quality - framework

- Spatial system boundary = farm;
- Temporal system boundary = crop rotation period (6-8 years)
- Management data of all plots of a farm in a single year are considered as representative for a whole crop rotation
- Only influences of agricultural management practices are included, not immissions
- The development trend of soil properties is assessed, not absolute values
 Physical Rooting depth of soil

Evaluating ecosystem services in the life cycle assessment framework Thomas Nemecek | Agroscope

Agroscope

D

SALCA soil quality – impact assessment

Example: slurry application

Evaluating ecosystem services in the life cycle assessment framework

Thomas Nemecek | Agroscope

Figure 1: Example of impact assessment of a slurry application

Ū

SALCA soil quality – Results DOK trial

Results of SALCA-Soil Quality for the five treatments

D	irect Indicators for soil quality	D0	D2	02	K2	Μ
cal	Rooting depth of soil	0	0	0	0	0
Jysic	Macropore volume	0	0	+	+	0
łd	Aggregate stability	-	+	+	+	-
cal	Corg content		+	+	+	
emi	Heavy metal content	0	0	0	0	0
Ch	Organic pollutants	0	0	0	0	0
cal	Eathworm biomass	0	0	0	+	0
ologi	Microbial biomass	-	0	+	+	-
Bio	Microbial activity	-	0	+	+	-

- Minor differences between the three farming systems because most management practices are similar or equal regarding soil quality. Some indicators do not show a positive effect in D2 because of slightly less organic input compared to O2 and K2.
- **D0 and M:** Impacts on soil quality because of insufficient organic carbon supply without organic fertilisers and removal of crop residues.
- •O2 and K2: Positive effect of crop rotation on macropore volume is not negated by a high compaction risk.

Cultural ESS: Landscape Aesthetics

Goal

Estimate the contribution of a farm to a **diverse and / or nice landscape**.

Theoretical framework

Based on framework of Tveit et al. (2006)

- Complexity (diversity)
- Naturalness
- Ephemera (weather phenomena, season)

Computation

- Diversity -> Shannon-Index $H = \sum_{i=1}^{n} -p_i \cdot \ln(p_i)$
- Naturalness -> Preference values
- Season -> accumulated seasonal diversity

Challenges for integrating ESS into LCA

- Spatial differentiation: global coverage needed with generic CFs for the background system, specific CFs for the foreground system
- Relation to functional unit
- Time horizon / regeneration time
- Different options of inclusion
- Defining the reference situation
- Aggregation of many different impacts / services
- Assessment of ESS more challenging for animal production systems, due to feedstuffs and animals brought on the farm
- Integrate ESS into LCA or combine the two methods?

Agroscope

Conclusions

- Both methodologies have fundamentally the same goals
- LCA and ESS assessment have overlaps and complementarities; their combination provides a more complete picture of environmental sustainability
- Provisioning services can be considered in the functional unit
- Regulation and maintenance services can be included by specific indicators
- Cultural services can be covered by social LCA and landscape aesthetics
- Substantial developments of methods, databases and tools are needed to allow a systematic assessment of ESS

Thank you for your attention

Agroscope good food, healthy environment