Analysis of the net food production of different livestock categories in Austria

University of **Natural Resources and** Life Sciences, Vienna

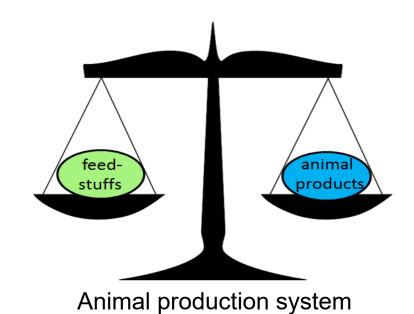
Department of Sustainable Agricultural Systems

Division of Livestock Sciences WG Feeding Systems

Lehr- und Forschungszentrum

Paul Ertl, Andreas Steinwidder, Wilhelm Knaus, Werner Zollitsch

(werner.zollitsch@boku.ac.at)



29.08.2016 EAAP Meeting - Belfast 1


Background

- Worldwide trends:
 - Population growth
 - Consumption of animal source foods ↑
 - = > Crop demands nearly double (2005–2050)
- Conversion efficiency of livestock systems ~10:1
- Need to increase net food production

Measuring net food production

Quantity changes?

Quality changes?

Materials and Methods (I)

Quantity changes:

Human-edible feed conversion efficiency (heFCE)

```
= \frac{human-edible\ output\ (animal\ products)}{human-edible\ input\ (feeds)}\ (for\ GE\ and\ CP)
```

Quality changes (for protein):

Protein quality ratio (PQR)

= Protein quality score of human-edible output
Protein quality score of human-edible input

Materials and Methods (II)

- Data Source:
 - National data from 2011–2013
 - Human-edible output:
 - Livestock production data (Statistics Austria)
 - Human-edible input:
 - National feed balance (Statistics Austria)
 - Estimated human-edible fractions of feeds

Materials and Methods (III)

- Protein quality:
 - Digestibility
 - (Indispensable) amino acid composition
- => Digestible Indispensable Amino Acid Score (DIAAS)

Results - Energy

	Human-edible fraction (% of feed)	FCR	heFCE
Dairy cows	10.3		1.44
Growing-fattening bulls	17.4	11.5	0.26
Swine	51.3	3.7	0.35
Laying hens	51.0		0.31
Broiler	48.5	2.2	0.30
Sheep	10.3		0.31

$$FCR = \frac{kg \ feed \ dry \ matter}{kg \ bone-in \ carcass}$$

heFCE = $\frac{human-edible\ energy\ in\ the\ animal\ product}{human-edible\ energy\ in\ feeds}$

Results - Protein

	heFCE	PQR
Dairy cows	1.98	1.9
Growing-fattening bulls	0.45	1.7
Swine	0.36	1.7
Laying hens	0.63	1.6
Broiler	0.52	1.4
Sheep	0.54	1.9

 $\mathbf{heFCE} = \frac{human-edible\ protein\ in\ the\ animal\ product}{human-edible\ protein\ in\ feeds}$

 $PQR = \frac{Protein\ quality\ score\ output}{Protein\ quality\ score\ input}$

Take home messages

- Only about 10–20% of diets of ruminants is potentially human-edible
- Cattle in total contribute to human energy as well as protein supply
- When protein quality changes are included, not only cattle but also laying hens and sheep are net contributors to human food supply

A comprehensive version of this study can be found in the research paper "Net food production of different livestock: A national analysis for Austria including relative occupation of different land categories" published in *Die Bodenkultur – Journal of Land Management, Food and Environment* 2016/2.

Further information will be presented at the poster "Land occupation for livestock feed production in Austria"

Thank you for your attention

