Effect of nutrient supply on mammary gland development and gene expression in pre-weaned calves

L. N. Leal^{1, 2}, G. J. Hooiveld², M. A. Steele³, M. V. Boekschoten², F. Soberon^{4, 5}, M. E. Van Amburgh⁵, and J. Martín-Tereso¹

¹Trouw Nutrition Research and Development, The Netherlands
 ² Wageningen University, The Netherlands
 ³ Department of Agricultural, Food, and Nutritional Science, University of Alberta, Canada
 ⁴ Shur-Gain USA, Nutreco Canada Inc., Guelph, Canada
 ⁵ Cornell University, Ithaca

Abstract #23492

The metabolism can be programmed

"...early adaptation to a nutritional stress or stimulus that permanently changes the physiology and metabolism of the organism and continues to be expressed even in the absence of the stimulus/stress that initiated them..." (Patel and Srinivansan, 2002)

(Adapted from Conrad's Waddington epigenetic landscape)

The metabolism can be programmed

The metabolism can be programmed

Increased milk production ^{1, 2, 3, 5, 6} Reduced age at 1st calving ^{1, 3} Feed efficiency⁴

¹Bar-Peled et al. 1998; ²Drackley et al. 2007; ³Raeth-Knight et al. 2009; ⁴Soberon et al. 2011; ⁵Davis-Rincker et al. 2011; ⁶Soberon et al. 2012

Window of opportunity

Period 2-8 wks	Average		High	
ADG, g/day	400		670	
Period 9-14 wks	Average	High	Average	High
ADG, g/day	470	1060	400	1130
Final BW, kg	80	106	90	121
Parenchyma weight, g/100 kg BW	16	15	24	23
DNA, g/100 kg BW	44	42	85	86
RNA, g/100 kg BW	63	63	103	108

Increasing protein and energy from 2-8wk increased mammary development

(Brown et al., 2005)

Experimental work

mplications

Enhanced milk supply and organ development

ENHANCED: 1.3 kg/d MR

	Restricted (n=6)	Enhanced (n=6)	P value
Birth weight, kg	39.2	39.7	0.90
Harvest weight, kg	61.0	83.2	< 0.01
Age at harvest, days	54.3	54.0	0.80
MJ above maintenance, MJ	3.7	15.7	< 0.01
ADG, kg	0.39	0.82	<0.01
Mammary gland, g	75.48	337.58	< 0.01
Parenchyma, g	1.10	6.48	< 0.01
Parenchyma, % of BW	0.002	0.008	< 0.01

(Soberon and Van Amburgh, 2011)

Gene expression profiles

	Significantly changed genes in mammary gland (P<0.01)
Total	654
Up regulated	364
Down regulated	290
Up > 2 Fold change	48
Down < 2 Fold change	48

Gene expression – enrichment maps Cytoscape

- **↑** Cell proliferation (epithelial cells)
- **Triglyceride biosynthesis**
- **↑** ECM interaction (cell proliferation)
- ↓ Apoptosis
- ↑ Metabolism

Branched chain AA/oxidative energy metabolism

↑ Milk intake
↑ BW
↑ Liver
↑ Mammary gland
↓ Dry feed intake

Upstream regulator analysis (IPA)

Upstream regulator (P<0.01)	Activation Z-Score (> 2.00)	Predicted activation state	Effect in the tissue	References
ТР63	2.26	Activated	Cell proliferation & diferentitation	1, 2
NFKB1	2.19	Activated	Cell proliferation, epithelial morphogenesis	3, 4, 5
ТР53	2.04	Activated	Cell proliferation & diferentitation	6, 7
BCL6	- 2.00	Supressed	Cell diferentitation	8, 9, 10, 11
ESR2	- 2.19	Supressed	Cell proliferation	12, 13, 14

¹ Yang et al. 1999; ² Senoo et al. 2007; ³ Hayden et al. 2008; ⁴ Brantley et al. 2000; ⁵ Brantley et al. 2001; ⁶ Cam et al., 2006; ⁷ Wang et al. 2015; ⁸ Ye et al. 2003; ⁹ Bos et al. 2003; ¹⁰ Logarajah et al. 2003; ¹¹ Tran et al. 2010; ¹² Weihua et al. 2001; ¹³ Weihua et al. 2002; ¹⁴ Imamov et al. 2012

Experimental work

Take home messages

- Early life stimuli have long lasting effects
- Depends on the timing and intensity (early nutritional interventions)
- Elevated planes of nutrition substantially modified gene expression
- Differentiated mammary organogenesis

Thank you for your attention

