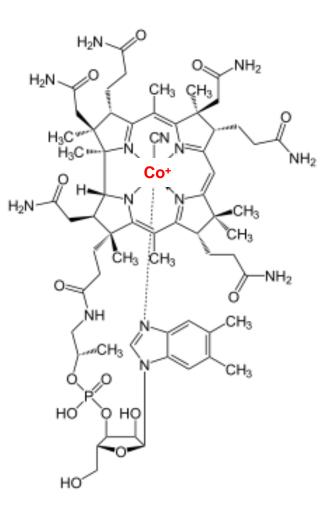


UNITED KINGDOM · CHINA · MALAYSIA

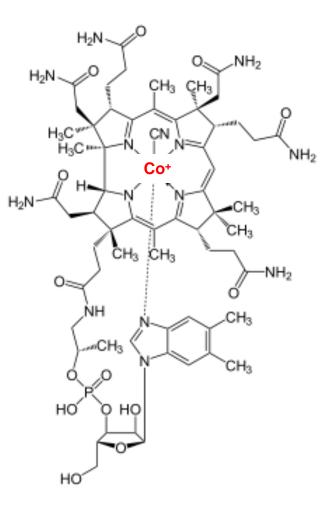

Added dietary cobalt and vitamin B₁₂ in the periparturient period in dairy cows

Achchillage D.V.W.¹., Brassington A.H²., Sinclair K.D²., and Sinclair L.A¹

¹Harper Adams University, Shropshire, UK, ²Nottingham University, Sutton Bonington, UK.

Background

- Harper Adams University
- Cobalt required by rumen microbes to synthesise vitamin B₁₂
- Vit B₁₂ has the most complex structure of all vitamins
- Coenzymic forms of Vit B₁₂ involved in several enzyme systems:
- Methyltransferase: synthesis of methionine from homocysteine
- Glucose synthesis from propionate: methylmalonyl Co-A to succinyl CoA


Background

- Cobalt deficiency symptoms include:
 - inappetance
 - ketosis
 - fatty liver syndrome
 - reduced performance

Changes in EU inclusion rates:

- Recommended levels = 0.11 mg/kg DM
- Maximum added levels = 0.34 mg/kg DM
- Maximum total diet = 1.1 mg/kg DM
- Lead to concern that insufficient Co being fed
- Vit B₁₂ supplements being used

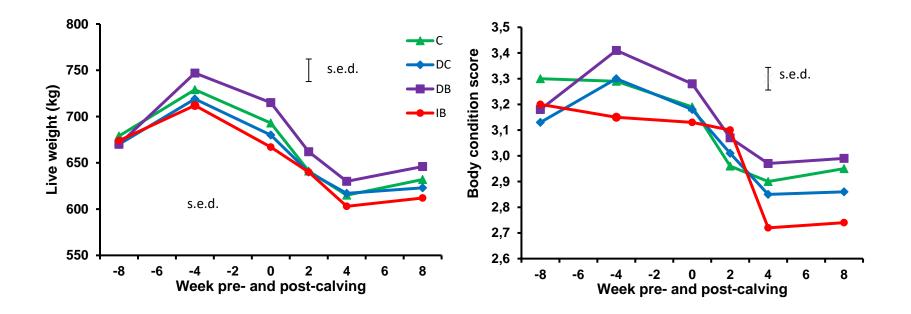
To determine the effect of the dietary addition of Co, vit B_{12} or injecting vit B_{12} in late gestation/early lactation on dairy cow performance, intake, blood metabolites and liver fat levels

Materials and Method

- 56 Holstein-Friesian dairy cows
- 8 weeks pre-calving to 8 weeks post-calving
- Four dietary treatments:
 - C: no added cobalt
 - DC: + 0.2 mg Co per kg DM
 - **DB:** + 0.68 mg Vit B_{12} per kg DM
 - **IB:** weekly injection of 10 mg Vit B₁₂
- Weighed, condition scored & blood sampled
- Intake and milk yield post calving
- Liver biopsy at -8 and + 4 weeks

Diet composition g/kg DM

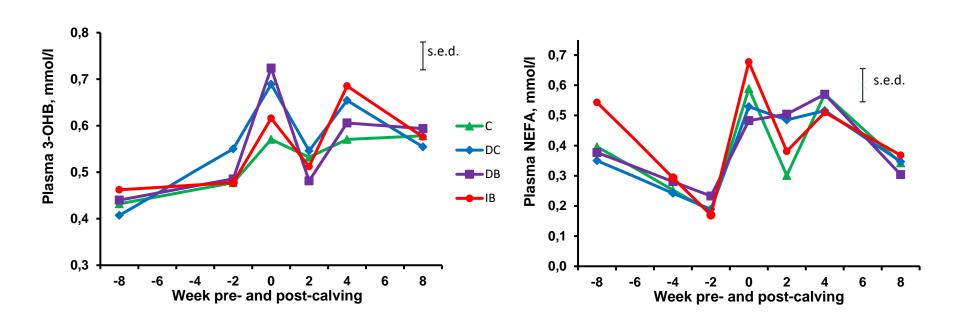
	Dry cow	Lactation
Chopped wheat straw	471	
Maize silage	218	389
Lucerne silage	87	111
Wheat	109	79
Molassed sugar beet feed		79
Soya hulls		66
Molasses	3	7
Protected fat		16
Rapeseed meal	31	91
Soyabean meal	26	76
Maize gluten meal	19	55
Palm kernel meal	9	25
Urea	10	1
Mins/Vits	13	5



Chemical analysis g/kg DM

		Dry	С	DC	DB	IB
DM, g/kg		474	471	466	468	471
Organic matter		932	941	939	937	941
Crude protein		139	168	169	165	168
Fat, g/kg of DM		16.7	33.5	34.4	31.7	33.5
Co, mg/kg DM	<	0.21	0.21	0.36	0.22	0.21

Live weight and body condition


Intake and milk performance

	С	DC	DB	IB	s.e.d	P-value
DM intake, kg/d	21.5	21.3	21.7	21.8	> 0.78	0.918
Milk yield, kg/d	38.3	39.5	40.8	39.6	1.58	0.480
Milk fat, g/kg	40.6	40.8	40.6	39.6	1.92	0.922
Milk protein, g/kg	32.9	33.2	33.3	33.1	0.67	0.936
Milk fat, kg/d	1.54	1.59	1.63	1.55	> 0.921	0.715
Milk protein, kg/d	1.24	1.28	1.34	1.30	0.046	0.235
SCC, Log ₁₀ /mL	1.74	1.59	1.67	1.83	0.152	0.452

Plasma 3-OHB and NEFA

Liver triacylglycerol mg/g fresh weight

	С	DC	DB	IB	s.e.d.	P-value
Pre-partum	7.1	6.9	7.0	9.2	2.08	0.664
Post-partum	30.7	26.9	33.7	33.8	13.00	0.946

Conclusions

Compared to unsupplemented control diet there was little effect of feeding additional dietary Co or vit B_{12} , or injecting with vitamin B_{12} on:

- live weight pre- or post-calving,
- post-calving dry matter intake, milk yield or composition
- plasma metabolites that indicate clinical or subclinical ketosis
- liver fat levels

The recent limitations on the use of Co in the diet of dairy cows is therefore unlikely to have any significant impact on cow performance or health

Project funded by

Part of the AHDB Dairy Research Partnership

